Near infrared plasmonic sensor based on Fano resonance

2016 ◽  
Author(s):  
S. M. Sherif ◽  
L. Shahada ◽  
D. C. Zografopoulos ◽  
R. Beccherelli ◽  
M. Swillam
Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1164
Author(s):  
Gongli Xiao ◽  
Yanping Xu ◽  
Hongyan Yang ◽  
Zetao Ou ◽  
Jianyun Chen ◽  
...  

Herein, we propose a tunable plasmonic sensor with Fano resonators in an inverted U-shaped resonator. By manipulating the sharp asymmetric Fano resonance peaks, a high-sensitivity refractive index sensor can be realized. Using the multimode interference coupled-mode theory and the finite element method, we numerically simulate the influences of geometrical parameters on the plasmonic sensor. Optimizing the structure parameters, we can achieve a high plasmonic sensor with the maximum sensitivity for 840 nm/RIUand figure of merit for 3.9 × 105. The research results provide a reliable theoretical basis for designing high sensitivity to the next generation plasmonic nanosensor.


Nanophotonics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1015-1022
Author(s):  
Sang-Eun Mun ◽  
Chulsoo Choi ◽  
Jongwoo Hong ◽  
Byoungho Lee

AbstractFano resonance, one of the interesting resonance phenomena in physics, provides versatile applications when combined with a concept of metasurface in nanophotonics. Fano-resonant metasurface (FRM) is attracting a lot of attention due to its superior narrowband characteristics as well as design freedom of metasurfaces in nanoscale. However, only the control of apparent asymmetric spectral nature of Fano resonance has been focused at applications such as optical sensors, as the amplitude feature of Fano resonances is relatively easy to control and can be measured by an experimental setup. Here, a method for modulating the phase information of FRM by both simulation and experiment is demonstrated. As a proof of concept, an optical demultiplexer, which can divide four target wavelengths in different directions of free space, is verified experimentally. It covers a broadband wavelength range of more than 350 nm in the near-infrared region with extremely small full-width at half-maximum. This approach can offer the complete control of FRM for a wide range of applications, including optical multiplexers, routers, filters, and switches, beyond conventional applications that have been limited to the amplitude control of Fano resonance.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 493 ◽  
Author(s):  
Yuan-Fong Chou Chau ◽  
Chung-Ting Chou Chao ◽  
Hung Ji Huang ◽  
Muhammad Raziq Rahimi Kooh ◽  
N. T. R. N. Kumara ◽  
...  

Plasmonic effect using a cross-hair can convey strongly localized surface plasmon modes among the separated composite nanostructures. Compared to its counterpart without the cross-hair, this characteristic has the remarkable merit of enhancing absorptance at resonance and can make the structure carry out a dual-band plasmonic perfect absorber (PPA). In this paper, we propose and design a novel dual-band PPA with a gathering of four metal-shell nanorods using a cross-hair operating at visible and near-infrared regions. Two absorptance peaks at 1050 nm and 750 nm with maximal absorptance of 99.59% and 99.89% for modes 1 and 2, respectively, are detected. High sensitivity of 1200 nm refractive unit (1/RIU), figure of merit of 26.67 and Q factor of 23.33 are acquired, which are very remarkable compared with the other PPAs. In addition, the absorptance in mode 1 is about nine times compared to its counterpart without the cross-hair. The proposed structure gives a novel inspiration for the design of a tunable dual-band PPA, which can be exploited for plasmonic sensor and other nanophotonic devices.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1359
Author(s):  
Yaxin Yu ◽  
Jiangong Cui ◽  
Guochang Liu ◽  
Rongyu Zhao ◽  
Min Zhu ◽  
...  

To reduce the loss of the metal–insulator–metal waveguide structure in the near-infrared region, a plasmonic nanosensor structure based on a racetrack resonant cavity is proposed herein. Through finite element simulation, the transmission spectra of the sensor under different size parameters were analyzed, and its influence on the sensing characteristics of the system was examined. The analysis results show that the structure can excite the double Fano resonance, which has a distinctive dependence on the size parameters of the sensor. The position and line shape of the resonance peak can be adjusted by changing the key parameters. In addition, the sensor has a higher sensitivity, which can reach 1503.7 nm/RIU when being used in refractive index sensing; the figure of merit is 26.8, and it can reach 0.75 nm/°C when it is used in temperature sensing. This structure can be used in optical integrated circuits, especially high-sensitivity nanosensors.


Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 947-957
Author(s):  
Jie Ou ◽  
Xiao-Qing Luo ◽  
You-Lin Luo ◽  
Wei-Hua Zhu ◽  
Zhi-Yong Chen ◽  
...  

AbstractPlasmonic Fano resonance (FR) that contributes to multitudinous potential applications in subwavelength nanostructures can facilitate the realization of tunable wavelength selectivity for controlling light–matter interactions in metasurfaces. However, the plasmonic FR can be generated in metasurfaces with simple or complex geometries, and few of them can support flexible amplitude modulation and multiwavelength information transfer and processing. Here, we study the near-infrared plasmonic FR in a hybrid metasurface composed of concentrically hybridized parabolic-hole and circular-ring-aperture unit cells, which can induce polarization-dependent dual-wavelength passive plasmonic switching (PPS) and digital metasurface (DM). It is shown that the designable plasmonic FR can be realized by changing the geometric configurations of the unit cells. In particular, owing to the polarization-dependent characteristic of FR, it is possible to fulfill a compact dual-wavelength PPS with high ON/OFF ratios in the related optical communication bands. Moreover, such PPS that manipulates the amplitude response of the transmitted spectrum is an efficient way to reveal a 1-bit DM, which can also be rationally extended to a 2-bit DM or more. Our results suggest a pathway for studying polarization-dependent PPS and programmable metasurface devices, yielding possibilities for subwavelength nanostructures in optical communication and information processing.


Micromachines ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 268 ◽  
Author(s):  
Jianfa Zhang ◽  
Qilin Hong ◽  
Jinglan Zou ◽  
Yuwen He ◽  
Xiaodong Yuan ◽  
...  

Fano resonances in nanostructures have attracted widespread research interests in the past few years for their potential applications in sensing, switching and nonlinear optics. In this paper, a mid-infrared Fano resonance in a hybrid metal-graphene metamaterial is studied. The hybrid metamaterial consists of a metallic grid enclosing with graphene nanodisks. The Fano resonance arises from the coupling of graphene and metallic plasmonic resonances and it is sharper than plasmonic resonances in pure graphene nanostructures. The resonance strength can be enhanced by increasing the number of graphene layers. The proposed metamaterial can be employed as a high-performance mid-infrared plasmonic sensor with an unprecedented sensitivity of about 7.93 μm/RIU and figure of merit (FOM) of about 158.7.


Author(s):  
Zhaojian Zhang ◽  
Junbo Yang ◽  
Xin He ◽  
Jingjing Zhang ◽  
Jie Huang ◽  
...  

A plasmonic refractive index (RI) sensor based on metal-insulator-metal (MIM) waveguide coupled with concentric double rings resonator (CDRR) is proposed and investigated numerically. Utilizing the novel supermodes of the CDRR, the FWHM of the resonant wavelength can be modulated, and a sensitivity of 1060 nm/RIU with high figure of merit (FOM) 203.8 is realized in the near-infrared region. The unordinary modes as well as the influence of structure parameters on the sensing performance are also discussed. Such plasmonic sensor with simple framework and high optical resolution could be applied to on-chip sensing systems and integrated optical circuits. Besides, the special cases of bio- sensing and triple rings are also discussed.


Sign in / Sign up

Export Citation Format

Share Document