Perching and resting—A paradigm for UAV maneuvering with modularized landing gears

2019 ◽  
Vol 4 (28) ◽  
pp. eaau6637 ◽  
Author(s):  
Kaiyu Hang ◽  
Ximin Lyu ◽  
Haoran Song ◽  
Johannes A. Stork ◽  
Aaron M. Dollar ◽  
...  

Perching helps small unmanned aerial vehicles (UAVs) extend their time of operation by saving battery power. However, most strategies for UAV perching require complex maneuvering and rely on specific structures, such as rough walls for attaching or tree branches for grasping. Many strategies to perching neglect the UAV’s mission such that saving battery power interrupts the mission. We suggest enabling UAVs with the capability of making and stabilizing contacts with the environment, which will allow the UAV to consume less energy while retaining its altitude, in addition to the perching capability that has been proposed before. This new capability is termed “resting.” For this, we propose a modularized and actuated landing gear framework that allows stabilizing the UAV on a wide range of different structures by perching and resting. Modularization allows our framework to adapt to specific structures for resting through rapid prototyping with additive manufacturing. Actuation allows switching between different modes of perching and resting during flight and additionally enables perching by grasping. Our results show that this framework can be used to perform UAV perching and resting on a set of common structures, such as street lights and edges or corners of buildings. We show that the design is effective in reducing power consumption, promotes increased pose stability, and preserves large vision ranges while perching or resting at heights. In addition, we discuss the potential applications facilitated by our design, as well as the potential issues to be addressed for deployment in practice.

2021 ◽  
Vol 2021 ◽  
pp. 1-20 ◽  
Author(s):  
Dhinakaran Veeman ◽  
M. Swapna Sai ◽  
P. Sureshkumar ◽  
T. Jagadeesha ◽  
L. Natrayan ◽  
...  

As a technique of producing fabric engineering scaffolds, three-dimensional (3D) printing has tremendous possibilities. 3D printing applications are restricted to a wide range of biomaterials in the field of regenerative medicine and tissue engineering. Due to their biocompatibility, bioactiveness, and biodegradability, biopolymers such as collagen, alginate, silk fibroin, chitosan, alginate, cellulose, and starch are used in a variety of fields, including the food, biomedical, regeneration, agriculture, packaging, and pharmaceutical industries. The benefits of producing 3D-printed scaffolds are many, including the capacity to produce complicated geometries, porosity, and multicell coculture and to take growth factors into account. In particular, the additional production of biopolymers offers new options to produce 3D structures and materials with specialised patterns and properties. In the realm of tissue engineering and regenerative medicine (TERM), important progress has been accomplished; now, several state-of-the-art techniques are used to produce porous scaffolds for organ or tissue regeneration to be suited for tissue technology. Natural biopolymeric materials are often better suited for designing and manufacturing healing equipment than temporary implants and tissue regeneration materials owing to its appropriate properties and biocompatibility. The review focuses on the additive manufacturing of biopolymers with significant changes, advancements, trends, and developments in regenerative medicine and tissue engineering with potential applications.


2016 ◽  
Author(s):  
Tomasz Niedzielski ◽  
Matylda Witek ◽  
Waldemar Spallek

Abstract. We elaborated a new method for observing water surface areas and river stages using unmanned aerial vehicles (UAVs). It is based on processing multitemporal m orthophotomaps produced from the UAV-taken visual-light photographs of n sites of the river, acquired with a sufficient overlap in each part. Water surface areas are calculated in the first place, and subsequently expressed as fractions of total areas of water-covered terrain at a given site of the river recorded on m dates. The logarithms of the fractions are later calculated, producing m samples of size n. In order to detect statistically significant increments of water surface areas between two orthophotomaps we apply the asymptotic and bootstrapped versions of the Student's t-test, preceded by other tests that aim to check model assumptions. The procedure is applied to five orthophotomaps covering nine sites of the Ścinawka river (SW Poland). The data have been acquired during the experimental campaign, at which flight settings were kept unchanged over nearly 3 years (2012–2014). We have found that it is possible to detect transitions between water surface areas produced by all characteristic water levels (low, mean, intermediate and high stages). In addition, we infer that the identified transitions hold for characteristic river stages as well. In the experiment we detected all increments of water level: (1) from low stages to: mean, intermediate and high stages; (2) from mean stages to: intermediate and high stages; (3) from intermediate stages to high stages. Potential applications of the elaborated method include verification of hydrodynamic models and the associated predictions of high flows using on-demand UAV flights performed in near real-time as well as monitoring water levels of rivers in ungauged basins.


Author(s):  
Aleksandar Erceg ◽  
Zafer Kilic

Unmanned aerial vehicles (UAVs) are present in our lives, and although they are mostly connected to military purposes, they are becoming more present in the commercial and civilian sector. Possible applications of UAVs in the commercial and civilian sector will open new possibilities for further research and development of UAVs. This movement can bring new investment and new jobs, but at the same time, it will influence the way some activities are being done now. The use of UAVs brings savings in the production cycles and improve current operations in various industrial sectors. The chapter gives a definition and explains different types and potential applications of unmanned aerial vehicles in the word as well as the potential economic impact of their development and use. In the second part, the chapter analyzes the application of drones in Turkey and Croatia. Although different in terms of their size and the number of inhabitants, both countries are at the same level in relation to UAV application. Applications in both countries are compared, and after that, a conclusion is drawn.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4779 ◽  
Author(s):  
Nader S. Labib ◽  
Grégoire Danoy ◽  
Jedrzej Musial ◽  
Matthias R. Brust ◽  
Pascal Bouvry

The rapid adoption of Internet of Things (IoT) has encouraged the integration of new connected devices such as Unmanned Aerial Vehicles (UAVs) to the ubiquitous network. UAVs promise a pragmatic solution to the limitations of existing terrestrial IoT infrastructure as well as bring new means of delivering IoT services through a wide range of applications. Owning to their potential, UAVs are expected to soon dominate the low-altitude airspace over populated cities. This introduces new research challenges such as the safe management of UAVs operation under high traffic demands. This paper proposes a novel way of structuring the uncontrolled, low-altitude airspace, with the aim of addressing the complex problem of UAV traffic management at an abstract level. The work, hence, introduces a model of the airspace as a weighted multilayer network of nodes and airways and presents a set of experimental simulation results using three UAV traffic management heuristics.


2016 ◽  
Vol 4 (4) ◽  
pp. 228-245 ◽  
Author(s):  
Brian Rutkay ◽  
Jeremy Laliberté

The objective of this research was to develop a process for the design and manufacture of mission- and aircraft-specific propellers for small unmanned aerial vehicles. This objective was met by creating a computer program to design a propeller that meets user-defined aircraft performance requirements within the limitations of the electric motor, user-selected materials, and manufacturing methods. A comprehensive review of prior UAV propeller design and additive manufacturing for small propellers is also presented in this paper. The use of additive manufacturing (3D printing) in making flightworthy propellers was explored through material testing, manufacturing trials, and by testing the propellers under simulated flight conditions in a wind tunnel. It was found that the propeller performance generated nearly the predicted design thrust but the efficiency and power consumption could not be accurately measured with the present test setup. While flight testing was not completed at this time, ground and wind tunnel testing were sufficient to demonstrate the feasibility of producing flightworthy propellers using additive manufacturing.


2019 ◽  
Vol 105 (1) ◽  
pp. 29-33
Author(s):  
G McKnight ◽  
M Palmer ◽  
M Khan

AbstractThe recent development of Unmanned Aerial Vehicles (UAVs) and their potential use for casualty evacuation (CASEVAC) has exciting implications for the United Kingdom Defence Medical Services (DMS). When compared to existing technology, the unique attributes of small size, increased manoeuvrability and lack of a human pilot would be extremely useful in congested and hazardous settings. There are ethical and practical considerations to be taken into account, but harnessing the full potential of this technology may improve the chances of survival from some battlefield injuries.UAVs could be of most benefit in a congested and complex battlespace, allowing evacuation of casualties from high risk environments. In addition to CASEVAC, a UAV could be used for critical care transfers, Search and Rescue (SAR) and Humanitarian And Disaster Relief (HADR) operations. Given the vast array of potential applications and a lower risk profile compared with current CASEVAC platforms, the DMS should actively monitor the development of UAV technology and plan ahead for integration within current doctrine.


Subject Post-Obama armed UAV policy. Significance As President Barack Obama prepares to leave office in January 2017, his administration has called for the United States to lead development of a set of international norms to govern the use of armed UAVs ('unmanned aerial vehicles' or 'drones'). The international proliferation and military use of armed UAVs by nations outside the circle of trusted US allies have highlighted the urgency of formulating clearly articulated international rules to govern an otherwise vaguely defined arena of international behaviour dominated by US precedent. Impacts Congressional aversion to supporting ground interventions abroad will enable the next president further to delay UAV policy reform. A wide range of countries frustrated with restrictions from Washington may turn to China as a key supplier of armed UAVs. Failed US efforts to reform the covert drone programme may complicate intelligence-sharing with European allies.


2021 ◽  
Vol 33 ◽  
pp. 237-250
Author(s):  
Nikolay Zagorski

Modern military unmanned aerial vehicles (UAVs) are assigned a wide range of functions, for the implementation of which they perform many tasks in various military conflicts. The results of the analysis give them the opportunity to reveal the problems in the use of UAVs, make changes in their functions and tasks and identify areas for further development. At present, this requires the introduction of the achievements of artificial intelligence, the introduction of expert systems and microelectronics on board UAVs, as well as their integration with various other means of conducting armed struggle. At the same time, some of the technological solutions for the creation and improvement of UAVs for military purposes can be applied in the civilian sector.


2021 ◽  
Vol 24 (2) ◽  
pp. 70-92
Author(s):  
E. A. Vinogradov

Not less than one hundred thousand Unmanned Aerial Vehicles (UAVs) are expected to perform flights simultaneously in Russia by 2035. The UAV fleet capacity triggers the development of the systems for informational support, operating control and management of UAV flights (Unmanned Aircraft System Traffic Management (UTM) systems) similar to that one already operating in manned aviation. The challenges arising in the sphere of civil aviation cannot be solved without wireless communication. The goals of this article are as follows: 1) familiarization of communication experts with the latest scientific developments of unmanned aerial technologies 2) description of the telecommunication-related problems of extensive systems of UAV control encountered by development engineers. In this article a schematic architecture and main functions of UTM systems are described as well as the examples of their implementation. Special emphasis is put on enhancing flight safety by means of a rational choice of communication technologies to manage conflicts (Conflict Management) known as "collision avoidance". The article analyzes the application of a wide range of wireless technologies ranging from Wi-Fi and Automatic Dependent Surveillance Broadcast (ADS-B) to 5G cellular networks as well as cell-free networks contributing to the development of 6G communication networks. As a result of the analysis, a list of promising research trends at the intersection of the fields of wireless communication and UAVs for civil application is made.


Author(s):  
Mark Christian Manuel ◽  
Jennifer Dela Cruz ◽  
Rose Ellen N. Macabiog ◽  
Elton Dennis S. Gasic ◽  
John Paul V. Lapitan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document