Early Cretaceous (Neocomian-early Barremian) spores and pollen grains from the Six Hills Formation, Kharga area, Egypt abb: 7

2003 ◽  
Vol 227 (2) ◽  
pp. 153-174
Author(s):  
Magdy S. Mahmoud ◽  
Eckhart Schrank
2018 ◽  
Vol 58 (2) ◽  
pp. 159-174 ◽  
Author(s):  
Mário Miguel Mendes ◽  
Else Marie Friis

AbstractA new fossil flora is described from the Early Cretaceous of the western Portuguese Basin, based on a combined palynological-mesofossil study. The fossil specimens were extracted from samples collected in the Nossa Senhora da Luz opencast clay pit complex near the village of Juncal in the Estremadura region. The plant-bearing sediments belong to the Famalicão Member of the Figueira da Foz Formation, considered late Aptianearly Albian in age. The palynological assemblage is diverse, including 588 spores and pollen grains assigned to 30 genera and 48 species. The palynoflora is dominated by fern spores and conifer pollen. Angiosperm pollen is also present, but subordinate. The mesofossil flora is less diverse, including 175 specimens ascribed to 17 species, and is dominated by angiosperm fruits and seeds. The mesofossil flora also contains conifer seeds and twigs as well as fossils with selaginellaceous affinity. The fossil assemblage indicates a warm and seasonally dry climate for the Nossa Senhora da Luz flora.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Damián A. Fernández ◽  
Luis Palazzesi ◽  
M. Sol González Estebenet ◽  
M. Cristina Tellería ◽  
Viviana D. Barreda

AbstractA major climate shift took place about 40 Myr ago—the Middle Eocene Climatic Optimum or MECO—triggered by a significant rise of atmospheric CO2 concentrations. The biotic response to this MECO is well documented in the marine realm, but poorly explored in adjacent landmasses. Here, we quantify the response of the floras from America’s southernmost latitudes based on the analysis of terrestrially derived spores and pollen grains from the mid-late Eocene (~46–34 Myr) of southern Patagonia. Robust nonparametric estimators indicate that floras in southern Patagonia were in average ~40% more diverse during the MECO than pre-MECO and post-MECO intervals. The high atmospheric CO2 and increasing temperatures may have favored the combination of neotropical migrants with Gondwanan species, explaining in part the high diversity that we observed during the MECO. Our reconstructed biota reflects a greenhouse world and offers a climatic and ecological deep time scenario of an ice-free sub-Antarctic realm.


Author(s):  
Jun Zhang ◽  
Xiao-zhong Huang ◽  
Jia-le Wang ◽  
Richard HW Bradshaw ◽  
Tao Wang ◽  
...  

Precipitation has been suggested as a crucial influencing factor in the primary productivity in arid and semi-arid regions, yet how moisture fluctuation in an arid mountain-basin system of the north Qinghai–Tibetan Plateau has affected human activities is poorly understood. Here, we reconstruct the variations of grazing intensity in high elevations and regional humidity based on independent and high-resolution records of Sporormiella-type coprophilous fungal spores and pollen grains in the same well-dated sediment core from Lake Tian’E in the western Qilian Mountains over the past 3500 years. We find that stronger grazing activity was associated with low regional effective moisture, and propose that the drier regional climate pushed people and their livestock into the mountainous areas. A notable exception was a reduction of human and grazing activities in arid region with high mountains during 380–580 CE caused by centennial-length dry and cold conditions. In addition, it is also noteworthy that intensified grazing activity occurred during 580–720 CE and after ∼1920 CE, corresponding to a warmer and wetter climate and diverse subsistence strategies with social developments in the lowlands of the Hexi Corridor. Our findings potentially provide a historical reference for understanding how ancient people adapted to the climate change in arid region with high mountains.


2018 ◽  
Author(s):  
Fu-Shuang Li ◽  
Pyae Phyo ◽  
Joseph Jacobowitz ◽  
Mei Hong ◽  
Jing-Ke Weng

Sporopollenin is a ubiquitous and extremely chemically inert biopolymer that constitutes the outer wall of all land-plant spores and pollen grains. Sporopollenin protects the vulnerable plant gametes against a wide range of environmental assaults, and is considered as a prerequisite for the migration of early plants onto land. Despite its importance, the chemical structure of plant sporopollenin has remained elusive. Using a newly developed thioacidolysis degradative method together with state-of-the-art solid-state NMR techniques, we determined the detailed molecular structure of pine sporopollenin. We show that pine sporopollenin is primarily composed of aliphatic-polyketide-derived polyvinyl alcohol units and 7-O-p-coumaroylated C16 aliphatic units, crosslinked through a distinctive m-dioxane moiety featuring an acetal. Naringenin was also identified as a minor component of pine sporopollenin. This discovery answers the long-standing question about the chemical makeup of plant sporopollenin, laying the foundation for future investigations of sporopollenin biosynthesis and for design of new biomimetic polymers with desirable inert properties.


1967 ◽  
Vol 4 (6) ◽  
pp. 1185-1197 ◽  
Author(s):  
G. E. Rouse

Leaf compressions, spores, and pollen grains referrable to about 45 species were collected from a series of fine silts and coal stringers in the Parsnip River valley of the Rocky Mountain Trench. The leaf assemblage described in this paper indicates a late Maestrichtian to Danian age, somewhat younger than generally comparable assemblages previously reported from the lower part of the Edmonton Formation of Alberta, and from the Hell Creek, Lance, and Fox Hills Formations in the western interior of the United States. It also contains several species reported from the Nanaimo Group on eastern Vancouver Island. Plant microfossils (to be described in a later paper) include species of Glyptostrobus, Sciadopitys, Aquilapollenites, Pistillipollenites, Alnus, Myrica, Tilia, Pterocarya, and Carya, together with tricolpate pollen of uncertain affiliation. The combined leaf and microfossil assemblages indicate a warm mesothermal and humid paleoecological setting of low relief, suggesting absence of major mountain ranges westward to the Pacific Ocean.


Aerobiologia ◽  
2008 ◽  
Vol 24 (4) ◽  
pp. 191-201 ◽  
Author(s):  
E. Carvalho ◽  
C. Sindt ◽  
A. Verdier ◽  
C. Galan ◽  
L. O’Donoghue ◽  
...  

2005 ◽  
Vol 11 (S03) ◽  
pp. 78-81
Author(s):  
R. P. Santos ◽  
L. M. Rebelo ◽  
E. F. Costa ◽  
A. A. X. Santiago ◽  
V. N. Freire ◽  
...  

Pollens appear like a fine to coarse powder that is liberated by the microsporangia of Gimnosperms and Angiosperms. The pollen grain wall, the sporoderm, envelopes the microgametophytes (male gametophytes), which produce the male gametes of seed plants. Pollen grains are interesting from the material science point of view since the native polymer, the sporopollenin, found in the sporoderm outer layer (exine), is one of the toughest known materials which is degraded by oxidation but is resistant to reduction. This property permits the sporopollenin persistence as an unaltered polymer in sediments of great age, e.g the Ordovician period, 400 million years ago. Sporopollenin is a mixture of fatty acids, phenyl-derivatives as p-coumaric acid, and carotenes [1]. Its nanostructure is not yet completed revealed. Therefore, more studies must be performed. A number of models have been proposed for the sporopollenin nanostructure of spores and pollen grains [2]. Rowley et al. [3-4] interpret exine structure as being formed by helical subunits, based on transmission and scanning electron microscope (TEM and SEM) studies. The atomic force microscopy (AFM) is the ideal method to study the sporopollenin nanostructure [5] since the arrangement of components is not visualized easily through other microscope techniques (e.g. TEM and SEM). In the present work, we used AFM to study the sporopollenin nanostructure of the Ilex paraguariensis A.St.Hil. exine, an Angiosperm (Aquifoliaceae).


Parasitology ◽  
1967 ◽  
Vol 57 (2) ◽  
pp. 371-388 ◽  
Author(s):  
Valerie M. Dowding

The anatomy and function of the pharyngeal ridges, which occur in the larvae of saprophagous Cyclorrhapha but are generally absent in biontophagous forms, were investigated.The ridges extend throughout the length of the ventral aspect of the pharynx and lie in an evagination of its floor. They enclose channels which narrow and disappear posteriorly but are open anteriorly. Each ridge consists of a longitudinal plate projecting dorsally from the floor of the pharynx, the bifurcated upper edge of the plate bears, one on each side, a row of lateral lamellae, each about 0·3 μm thick. They are set vertically at regular intervals of just less than 1 μm. The lateral lamellae of adjacent ridges are closely apposed and completely roof over the channels between the ridges. Anteriorly the upper arms of the ridges are fused together.The lamellae form a sieve which retains particles of 0·6 μm and above in size as the relaxation of the pharyngeal dilator muscles allows the roof to descend so forcing liquid downward between the lamellae. In Calliphora vicina (Syn. C. erythrocephala) the sieve concentrates a suspension of 2700 particles of 4–7 μm per mm3 between five and six times. The natural food consists largely of bacteria.Fungus spores and pollen grains of selected sizes were used to demonstrate the movements of particulate material in the pharynx and to define the upper size limit of the particles ingested.Swallowing is effected by simultaneous relaxation of the anterior dilator and transverse muscles of the pharynx, with contraction of the posterior dilator muscles; the transverse muscles are otherwise maintained in a state of contraction closing the posterior exit from the pharynx.Starved third-instar larvae of C. vicina can ingest 50% of their body weight in 6 min.The larvae of the Cyclorrhapha which possess pharyngeal ridges are essentially particle feeders. The ridges form a sieve by means of which food is concentrated and the amount of non-nutritious liquid ingested is reduced. The lack of pharyngeal ridges in larvae feeding on living material is correlated with the constant and high nutritive value of both the solid and the liquid fractions of the food.I should like to thank Dr P. Tate for his help and encouragement during the course of this work which was carried out during the tenure of a Postgraduate Studentship awarded by the Agricultural Research Council. Thanks are also due to the staff of the Plant Pathology subdepartment of the Botany School, Cambridge, for their help in obtaining fungus spores of suitable sizes.


Sign in / Sign up

Export Citation Format

Share Document