scholarly journals In VitroEfficacy of Diallyl Sulfides against the Periodontopathogen Aggregatibacter actinomycetemcomitans

2012 ◽  
Vol 56 (5) ◽  
pp. 2397-2407 ◽  
Author(s):  
Kabilan Velliyagounder ◽  
Krishnaraj Ganeshnarayan ◽  
Senthil Kumar Velusamy ◽  
Daniel H. Fine

ABSTRACTThein vitroantibacterial effects of diallyl sulfide (DAS) against the Gram-negative periodontopathogenAggregatibacter actinomycetemcomitans, the key etiologic agent of the severe form of localized aggressive periodontitis and other nonoral infections, were studied.A. actinomycetemcomitanswas treated with garlic extract, allicin, or DAS, and the anti-A. actinomycetemcomitanseffects of the treatment were evaluated. Garlic extract, allicin, and DAS significantly inhibited the growth ofA. actinomycetemcomitans(greater than 3 log;P< 0.01) compared to control cells. Heat inactivation of the garlic extracts significantly reduced the protein concentration; however, the antimicrobial effect was retained. Purified proteins from garlic extract did not exhibit antimicrobial activity. Allicin lost all its antimicrobial effect when it was subjected to heat treatment, whereas DAS demonstrated an antimicrobial effect similar to that of the garlic extract, suggesting that the antimicrobial activity of garlic extract is mainly due to DAS. AnA. actinomycetemcomitansbiofilm-killing assay performed with DAS showed a significant reduction in biofilm cell numbers, as evidenced by both confocal microscopy and culture. Scanning electron microscopy (SEM) analysis of DAS-treatedA. actinomycetemcomitansbiofilms showed alterations of colony architecture indicating severe stress. Flow cytometry analysis of OBA9 cells did not demonstrate apoptosis or cell cycle arrest at therapeutic concentrations of DAS (0.01 and 0.1 μg/ml). DAS-treatedA. actinomycetemcomitanscells demonstrated complete inhibition of glutathione (GSH)S-transferase (GST) activity. However, OBA9 cells, when exposed to DAS at similar concentrations, showed no significant differences in GST activity, suggesting that DAS-induced GST inhibition might be involved inA. actinomycetemcomitanscell death. These findings demonstrate that DAS exhibits significant antibacterial activity againstA. actinomycetemcomitansand that this property might be utilized for exploring its therapeutic potential in treatment ofA. actinomycetemcomitans-associated oral and nonoral infections.

2021 ◽  
Vol 11 (3) ◽  
pp. 1180
Author(s):  
Kinga Paruch ◽  
Łukasz Popiołek ◽  
Anna Biernasiuk ◽  
Anna Berecka-Rycerz ◽  
Anna Malm ◽  
...  

Bacterial infections, especially those caused by strains resistant to commonly used antibiotics and chemotherapeutics, are still a current threat to public health. Therefore, the search for new molecules with potential antimicrobial activity is an important research goal. In this article, we present the synthesis and evaluation of the in vitro antimicrobial activity of a series of 15 new derivatives of 4-methyl-1,2,3-thiadiazole-5-carboxylic acid. The potential antimicrobial effect of the new compounds was observed mainly against Gram-positive bacteria. Compound 15, with the 5-nitro-2-furoyl moiety, showed the highest bioactivity: minimum inhibitory concentration (MIC) = 1.95–15.62 µg/mL and minimum bactericidal concentration (MBC)/MIC = 1–4 µg/mL.


2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Ørjan Samuelsen ◽  
Ove Alexander Høgmoen Åstrand ◽  
Christopher Fröhlich ◽  
Adam Heikal ◽  
Susann Skagseth ◽  
...  

ABSTRACT Carbapenem-resistant Gram-negative pathogens are a critical public health threat and there is an urgent need for new treatments. Carbapenemases (β-lactamases able to inactivate carbapenems) have been identified in both serine β-lactamase (SBL) and metallo-β-lactamase (MBL) families. The recent introduction of SBL carbapenemase inhibitors has provided alternative therapeutic options. Unfortunately, there are no approved inhibitors of MBL-mediated carbapenem-resistance and treatment options for infections caused by MBL-producing Gram-negatives are limited. Here, we present ZN148, a zinc-chelating MBL-inhibitor capable of restoring the bactericidal effect of meropenem and in vitro clinical susceptibility to carbapenems in >98% of a large international collection of MBL-producing clinical Enterobacterales strains (n = 234). Moreover, ZN148 was able to potentiate the effect of meropenem against NDM-1-producing Klebsiella pneumoniae in a murine neutropenic peritonitis model. ZN148 showed no inhibition of the human zinc-containing enzyme glyoxylase II at 500 μM, and no acute toxicity was observed in an in vivo mouse model with cumulative dosages up to 128 mg/kg. Biochemical analysis showed a time-dependent inhibition of MBLs by ZN148 and removal of zinc ions from the active site. Addition of exogenous zinc after ZN148 exposure only restored MBL activity by ∼30%, suggesting an irreversible mechanism of inhibition. Mass-spectrometry and molecular modeling indicated potential oxidation of the active site Cys221 residue. Overall, these results demonstrate the therapeutic potential of a ZN148-carbapenem combination against MBL-producing Gram-negative pathogens and that ZN148 is a highly promising MBL inhibitor that is capable of operating in a functional space not presently filled by any clinically approved compound.


2017 ◽  
Vol 62 (3) ◽  
Author(s):  
Mélanie A. C. Ikeh ◽  
Paul L. Fidel ◽  
Mairi C. Noverr

ABSTRACTPolymicrobial intra-abdominal infections (IAI) involvingCandida albicansandStaphylococcus aureusare associated with severe morbidity and mortality (∼80%). Our laboratory discovered that the immunomodulatory eicosanoid prostaglandin E2(PGE2) plays a key role in the lethal inflammatory response during polymicrobial IAI using a mouse model of infection. In studies designed to uncover key PGE2biosynthesis/signaling components involved in the response, selective eicosanoid enzyme inhibitors and receptor antagonists were selected and prescreened for antimicrobial activity againstC. albicansorS. aureus. Unexpectedly, we found that the EP4receptor antagonist L-161,982 had direct growth-inhibitory effects onS. aureusin vitroat the physiological concentration required to block the PGE2interaction with EP4. This antimicrobial activity was observed with methicillin-sensitiveS. aureusand methicillin-resistantS. aureus(MRSA) strains, with the MIC and minimum bactericidal concentration values for planktonic cells being 50 μg/ml and 100 μg/ml, respectively. In addition, L-161,982 inhibitedS. aureusbiofilm formation and had activity against preformed mature biofilms. More importantly, treatment of mice with L-161,982 following intraperitoneal inoculation with a lethal dose of MRSA significantly reduced the bioburden and enhanced survival. Furthermore, L-161,982 protected mice against the synergistic lethality induced by coinfection withC. albicansandS. aureus. The antimicrobial activity of L-161,982 is independent of EP4receptor inhibitory activity; an alternative EP4receptor antagonist exerted no antimicrobial or protective effects. Taken together, these findings demonstrate that L-161,982 has potent antimicrobial activity against MRSA and may represent a significant therapeutic alternative in improving the prognosis of mono- or polymicrobial infections involving MRSA.


Author(s):  
Larios-Cervantes Alexis Alberto ◽  
Chávez-Cortéz Elda Georgina ◽  
Martínez-Hernández Miryam ◽  
Talavera-Contreras Luis Gabriel ◽  
Espinoza-Guillen Adrian ◽  
...  

Microbiology ◽  
2021 ◽  
Vol 167 (11) ◽  
Author(s):  
Alberto Gonçalves Evangelista ◽  
Jessica Audrey Feijó Corrêa ◽  
João Vitor Garcia dos Santos ◽  
Eduardo Henrique Custódio Matté ◽  
Mônica Moura Milek ◽  
...  

The genus Salmonella is closely associated with foodborne outbreaks and animal diseases, and reports of antimicrobial resistance in Salmonella species are frequent. Several alternatives have been developed to control this pathogen, such as cell-free supernatants (CFS). Our objective here was to evaluate the use of lactic acid bacteria (LAB) CFS against Salmonella in vitro. Seventeen strains of LAB were used to produce CFS, and their antimicrobial activity was screened towards six strains of Salmonella . In addition, CFS were also pH-neutralized and/or boiled. Those with the best results were lyophilized. MICs of lyophilized CFS were 11.25–22.5 g l–1. Freeze-dried CFS were also used to supplement swine and poultry feed (11.25 g kg–1) and in vitro simulated digestion of both species was performed, with Salmonella contamination of 5×106 and 2×105 c.f.u. g−1 of swine and poultry feed, respectively. In the antimicrobial screening, all acidic CFS were able to inhibit the growth of Salmonella . After pH neutralization, Lactobacillus acidophilus Llorente, Limosilactobacillus fermentum CCT 1629, Lactiplantibacillus plantarum PUCPR44, Limosilactobacillus reuteri BioGaia, Lacticaseibacillus rhamnosus ATCC 7469 and Pediococcus pentosaceus UM116 CFS were the only strains that partially maintained their antimicrobial activity and, therefore, were chosen for lyophilization. In the simulated swine digestion, Salmonella counts were reduced ≥1.78 log c.f.u. g–1 in the digesta containing either of the CFS. In the chicken simulation, a significant reduction was obtained with all CFS used (average reduction of 0.59±0.01 log c.f.u. ml–1). In general, the lyophilized CFS of L. fermentum CCT 1629, L. rhamnosus ATCC 7469 and L. acidophilus Llorente presented better antimicrobial activity. In conclusion, CFS show potential as feed additives to control Salmonella in animal production and may be an alternative to the use of antibiotics, minimizing problems related to antimicrobial resistance.


2021 ◽  
Vol 11 (22) ◽  
pp. 11028
Author(s):  
Mohd W. A. Khan ◽  
Ahmed A. Otaibi ◽  
Arwa F. M. Alhumaid ◽  
Abdulmohsen K. D. Alsukaibi ◽  
Asma K. Alshamari ◽  
...  

Glycation of various biomolecules contributes to structural changes and formation of several high molecular weight fluorescent and non-fluorescent, advanced glycation end products (AGEs). AGEs and glycation are involved in various health complications. Synthetic medicines, including metformin, have several adverse effects. Natural products and their derivatives are used in the treatment of various diseases due to their significant therapeutic qualities. Allium sativum (garlic) is used in traditional medicines because of its antioxidant, anti-inflammatory, and anti-diabetic properties. This study aimed to determine the anti-glycating and AGEs inhibitory activities of garlic. Biochemical and biophysical analyses were performed for in vitro incubated human serum albumin (HSA) with 0.05 M of glucose for 1, 5, and 10 weeks. Anti-glycating and AGEs inhibitory effect of garlic was investigated in glycated samples. Increased biochemical and biophysical changes were observed in glycated HSA incubated for 10 weeks (G-HSA-10W) as compared to native HSA (N-HSA) as well as glycated HSA incubated for 1 (G-HSA-1W) and 5 weeks (G-HSA-5W). Garlic extract with a concentration of ≥6.25 µg/mL exhibited significant inhibition in biophysical and biochemical changes of G-HSA-10W. Our findings demonstrated that garlic extract has the ability to inhibit biochemical and biophysical changes in HSA that occurred due to glycation. Thus, garlic extract can be used against glycation and AGE-related health complications linked with chronic diseases in diabetic patients due to its broad therapeutic potential.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Claudia Pașca ◽  
Liviu Alexandru Mărghitaș ◽  
Daniel Severus Dezmirean ◽  
Ioana Adriana Matei ◽  
Victorița Bonta ◽  
...  

AbstractIntroductionBovine mastitis is an inflammatory disease of the udder that causes important economic losses in the animal breeding and dairy product industries. Nowadays, the conventional livestock antibiotic treatments are slowly being replaced by alternative treatments. In this context, the main aim of this study was to evaluate the efficacy of natural products in alternative treatment of bovine mastitis.Material and MethodsTwo natural formulations with previously suggested in vitro antimicrobial effect were tested in vivo on mastitic cows. Animals with a positive diagnosis for mastitis (n = 20) were divided into three treatment groups: two groups (n = 8) were administered formulations of propolis, alcoholic extracts of Brewers Gold and Perle hops, plum lichen, common mallow, marigold, absinthe wormwood, black poplar buds, lemon balm, and essential oils of oregano, lavender, and rosemary designated R4 and R7 (differing only in the latter being more concentrated) and one group (n = 4) a conventional antibiotic mixture. In vivo efficacy of treatments was evaluated by somatic cell and standard plate counts, the treatment being considered efficacious when both parameters were under the maximum limit.ResultsR7 was effective in the most cases, being therapeutically bactericidal in six out of eight cows, while R4 gave good results in three out of eight cows, and conventional antibiotics cured one out of four.ConclusionThese results suggest the possible therapeutic potential of these natural products in bovine mastitis.


2012 ◽  
Vol 2 (5) ◽  
pp. 217-226
Author(s):  
E. O. Omwenga ◽  
P. O. Okemo ◽  
P. K. Mbugua

The antimicrobial effect of some selected Samburu medicinal plants was evaluated on bacterial strains like Staphylococcus aureus ‐ ATCC 20591, Bacillus subtillis ‐ Local isolate, Salmonella typhi‐ATCC 2202, Escherichia coli‐STD. 25922 and Pseudomonas aeroginosa ‐ ATCC 25852 and fungal strains like Candida albicans ATCC EK138, Aspergillus niger ATCC 16404, Aspergillusflavus‐Local isolate, Fusarium lateritium‐Local isolate, and Penicillium spp.‐ local isolate. Methanol was used as solvent for the extraction from the selected medicinal plants used by the Samburu community. The in vitro antimicrobial activity was performed by agar disc diffusion and micro‐dilution technique. The most susceptible Gram‐positive bacterium was S. aureus, while the most susceptible Gram‐negative bacterium was P. aeroginosa. The extracts of Gomphocarpus fruticosus (L) W.T. Aiton showed less activity against the bacterial strains investigated. The most active antibacterial plants were Euphorbia scarlatica S. Carter, and Euclea divinoram Hiern. Incidentally most of the extracts were inactive against the fungal strains with only a few proving to be slightly active against the C. albicans i.e. Loranthus acaciae Zucc., Kedrostis pseudogijef (Gilg) C. Jeffrey, Euclea divinoram Hiern. and Croton macrostachyus (A. Rich). Benths. The significant antimicrobial activity of active extracts was compared with the standard antimicrobials, cefrodoxima, amoxicillin and fluconazole. The MICs of the most active plants ranged from 18.75mg/ml to 37.50mg/ml. The MBCs ranged between 18.75mg/ml to75mg/ml. These results were significant at P< 0.01. The findings show that most of the medicinal plants used by the Samburu community have some significant activity on the bacterial but not fungal pathogens known to cause diarrhoea.


2021 ◽  
Vol 16 (1) ◽  
pp. 52-58
Author(s):  
Elizabeth Winful ◽  
Olanikpekun Idowu ◽  
Opeoluwa O. Fasanya ◽  
Nkechi E. Egbe

Antimicrobial resistance has become a global health problem. Although a wide range of chemotherapeutic antimicrobials are available for treatment of microbial related infections and diseases, development of resistance to these chemotherapeutic agents is rapidly on the increase. Extracts from some plants have shown some promise in antimicrobial activity. This has led to the screening of several medicinal plants for their potential antimicrobial activity. Therefore, this study was aimed at evaluating the antimicrobial effect of ethanolic and aqueous extracts of Garcinia kola against Klebsiella pneumonia and Candida albicans in vitro. The Garcinia kola seeds extracts were obtained using 70% ethanol and distilled water respectively. Phytochemical screening of Garcinia kola revealed the presence of various potent phytochemicals such as tannins, saponins, flavonoids, alkaloids and glycosides. Both extracts of the seeds were investigated for antimicrobial activity using disc diffusion and agar well diffusion sensitivity tests. The ethanol extract produced zones of inhibition of about 7.3 mm for Candida albicans only at a concentration of 800mg/ml for the disc diffusion test. For the agar well diffusion test, the aqueous extract produced zones of inhibition of about 9.5 mm, while the ethanol extract produced zone of inhibition of 19 mm against Candida albicans at a concentration of 800 mg/ml. However, at the same concentration, the ethanol extract produced zones of inhibition of about 8.5 mm against Klebsiella pneumoniae. The findings of this study revealed that Garcinia kola was not effective in treating Klebsiella pneumonia infections but has potential in treating Candida albicans infections. Keywords: Garcinia kola, Klebsiella pneumonia, Candida albicans


2019 ◽  
Vol 87 (11) ◽  
Author(s):  
M. Al-Zubidi ◽  
M. Widziolek ◽  
E. K. Court ◽  
A. F. Gains ◽  
R. E. Smith ◽  
...  

ABSTRACTThe Gram-positive opportunistic pathogenEnterococcus faecalisis frequently responsible for nosocomial infections in humans and represents one of the most common bacteria isolated from recalcitrant endodontic (root canal) infections.E. faecalisis intrinsically resistant to several antibiotics routinely used in clinical settings (such as cephalosporins and aminoglycosides) and can acquire resistance to vancomycin (vancomycin-resistant enterococci). The resistance ofE. faecalisto several classes of antibiotics and its capacity to form biofilms cause serious therapeutic problems. Here, we report the isolation of several bacteriophages that targetE. faecalisstrains isolated from the oral cavity of patients suffering root canal infections. All phages isolated wereSiphoviridaewith similar tail lengths (200 to 250 nm) and icosahedral heads. The genome sequences of three isolated phages were highly conserved with the exception of predicted tail protein genes that diverge in sequence, potentially reflecting the host range. The properties of the phage with the broadest host range (SHEF2) were further characterized. We show that this phage requires interaction with components of the major and variant region enterococcal polysaccharide antigen to engage in lytic infection. Finally, we explored the therapeutic potential of this phage and show that it can eradicateE. faecalisbiofilms formedin vitroon a standard polystyrene surface but also on a cross-sectional tooth slice model of endodontic infection. We also show that SHEF2 cleared a lethal infection of zebrafish when applied in the circulation. We therefore propose that the phage described here could be used to treat a broad range of antibiotic-resistantE. faecalisinfections.


Sign in / Sign up

Export Citation Format

Share Document