scholarly journals Myxomavirus-Derived Serpin Prolongs Survival and Reduces Inflammation and Hemorrhage in an Unrelated Lethal Mouse Viral Infection

2013 ◽  
Vol 57 (9) ◽  
pp. 4114-4127 ◽  
Author(s):  
Hao Chen ◽  
Donghang Zheng ◽  
Jeff Abbott ◽  
Liying Liu ◽  
Mee Y. Bartee ◽  
...  

ABSTRACTLethal viral infections produce widespread inflammation with vascular leak, clotting, and bleeding (disseminated intravascular coagulation [DIC]), organ failure, and high mortality. Serine proteases in clot-forming (thrombotic) and clot-dissolving (thrombolytic) cascades are activated by an inflammatory cytokine storm and also can induce systemic inflammation with loss of normalserineproteaseinhibitor (serpin) regulation. Myxomavirus secretes a potent anti-inflammatory serpin, Serp-1, that inhibits clotting factor X (fX) and thrombolytic tissue- and urokinase-type plasminogen activators (tPA and uPA) with anti-inflammatory activity in multiple animal models. Purified serpin significantly improved survival in a murine gammaherpesvirus 68 (MHV68) infection in gamma interferon receptor (IFN-γR) knockout mice, a model for lethal inflammatory vasculitis. Treatment of MHV68-infected mice with neuroserpin, a mammalian serpin that inhibits only tPA and uPA, was ineffective. Serp-1 reduced virus load, lung hemorrhage, and aortic, lung, and colon inflammation in MHV68-infected mice and also reduced virus load. Neuroserpin suppressed a wide range of immune spleen cell responses after MHV68 infection, while Serp-1 selectively increased CD11c+splenocytes (macrophage and dendritic cells) and reduced CD11b+tissue macrophages. Serp-1 altered gene expression for coagulation and inflammatory responses, whereas neuroserpin did not. Serp-1 treatment was assessed in a second viral infection, mouse-adapted Zaire ebolavirus in wild-type BALB/c mice, with improved survival and reduced tissue necrosis. In summary, treatment with this unique myxomavirus-derived serpin suppresses systemic serine protease and innate immune responses caused by unrelated lethal viral infections (both RNA and DNA viruses), providing a potential new therapeutic approach for treatment of lethal viral sepsis.

2018 ◽  
Vol 475 (22) ◽  
pp. 3687-3706 ◽  
Author(s):  
Weibing Dong ◽  
Xin Zhu ◽  
Xuan Zhou ◽  
Ying Yang ◽  
Xin Yan ◽  
...  

Antimicrobial peptides have broad-spectrum killing activities against bacteria, enveloped viruses, fungi and several parasites via cell membrane permeation and exhibit primarily immunomodulatory and anti-infective functions in their interactions with host cells. However, the mechanism underlying their anti-inflammatory activity remains to be elucidated. L-K6, an analog of temporin-1CEb isolated from the skin secretion of Rana chensinensis, has demonstrated a wide range of antimicrobial activities against gram-negative and gram-positive bacteria. In this study, the potent anti-inflammatory mechanism of L-K6 and its analogs in lipopolysaccharide (LPS)-stimulated human macrophage U937 cells were evaluated. We found that L-K6 suppressed the expression of inflammatory factors by two downstream signaling components in the MyD88-dependent pathway, including the mitogen-activated protein kinases (MAPKs) and the NF (nuclear factor)-κB signaling pathway, but its analog L-K5, which had the same amino acid sequence as L-K6 but no Lys residue at the –COOH terminal, only inhibited the phosphorylation of I-κB and NF-κB. Importantly, L-K6 and L-K5 were actively taken up by U937 cells through an independent cell membrane disruption mechanism and were eventually localized to the perinuclear region. The L-K6 uptake process was mediated by endocytosis, but L-K5 was specifically taken up by U937 cells via TLR4 endocytosis. Our results demonstrated that L-K6 can neutralize LPS and diassociate LPS micelles to inhibit LPS from triggering the proinflammatory signaling pathway, and by partially inhibiting inflammatory responses by the intracellular target. However, L-K5 may mainly inhibit proinflammatory responses by intracellular reporters to modulate the NF-κB signaling pathway.


2019 ◽  
Vol 20 (17) ◽  
pp. 4241 ◽  
Author(s):  
Jean S. Marshall ◽  
Liliana Portales-Cervantes ◽  
Edwin Leong

Mast cells are well accepted as important sentinel cells for host defence against selected pathogens. Their location at mucosal surfaces and ability to mobilize multiple aspects of early immune responses makes them critical contributors to effective immunity in several experimental settings. However, the interactions of mast cells with viruses and pathogen products are complex and can have both detrimental and positive impacts. There is substantial evidence for mast cell mobilization and activation of effector cells and mobilization of dendritic cells following viral challenge. These cells are a major and under-appreciated local source of type I and III interferons following viral challenge. However, mast cells have also been implicated in inappropriate inflammatory responses, long term fibrosis, and vascular leakage associated with viral infections. Progress in combating infection and boosting effective immunity requires a better understanding of mast cell responses to viral infection and the pathogen products and receptors we can employ to modify such responses. In this review, we outline some of the key known responses of mast cells to viral infection and their major responses to pathogen products. We have placed an emphasis on data obtained from human mast cells and aim to provide a framework for considering the complex interactions between mast cells and pathogens with a view to exploiting this knowledge therapeutically. Long-lived resident mast cells and their responses to viruses and pathogen products provide excellent opportunities to modify local immune responses that remain to be fully exploited in cancer immunotherapy, vaccination, and treatment of infectious diseases.


2019 ◽  
Vol 10 (2) ◽  
pp. 83-87
Author(s):  
Yury V. Petrenko ◽  
Ksenia S. Gerasimova ◽  
Valeria P. Novikova

Adipose tissue is now recognized as an important endocrine organ that secretes numerous protein hormones, including leptin, adiponectin, and resistin. Adiponectin is a hormone that is produced by white adipose tissue. Adiponectin has been isolated independently by several groups of scientists. In humans, this protein is encoded by the ADIPOQ gene. Adiponectin receptors are widely distributed in many organs and tissues including liver, heart, pancreas, kidneys, muscles and many other cell types. A serum concentration of adipocin correlates with body mass index (BMI). Decreased level of adiponectin leads to obesity, the development of gestational complications in pregnant women, as well as a high risk of diabetes mellitus development and atherosclerosis. A high concentration of this hormone has anti-inflammatory, antiatherogenic, antiproliferative and cancer-defense mechanisms. Adiponectin strongly suppresses hepatic gluconeogenesis by inhibiting genes involved in glucose production. Obese people have lower blood levels of adiponectin than normal weight individuals. Adiponectin’s anti-inflammatory and anti-apoptotic properties result in protection of the blood vessels, heart, lungs, and colon. Adiponectin, an abundant adipocyte-secreted factor with a wide-range of biological activities, improves insulin sensitivity in insulin target tissues, modulates inflammatory responses, and plays a crucial role in the regulation of energy metabolism.


2021 ◽  
Vol 11 ◽  
Author(s):  
Alastair Watson ◽  
Jens Madsen ◽  
Howard William Clark

Surfactant proteins A (SP-A) and D (SP-D) are soluble innate immune molecules which maintain lung homeostasis through their dual roles as anti-infectious and immunomodulatory agents. SP-A and SP-D bind numerous viruses including influenza A virus, respiratory syncytial virus (RSV) and human immunodeficiency virus (HIV), enhancing their clearance from mucosal points of entry and modulating the inflammatory response. They also have diverse roles in mediating innate and adaptive cell functions and in clearing apoptotic cells, allergens and other noxious particles. Here, we review how the properties of these first line defense molecules modulate inflammatory responses, as well as host-mediated immunopathology in response to viral infections. Since SP-A and SP-D are known to offer protection from viral and other infections, if their levels are decreased in some disease states as they are in severe asthma and chronic obstructive pulmonary disease (COPD), this may confer an increased risk of viral infection and exacerbations of disease. Recombinant molecules of SP-A and SP-D could be useful in both blocking respiratory viral infection while also modulating the immune system to prevent excessive inflammatory responses seen in, for example, RSV or coronavirus disease 2019 (COVID-19). Recombinant SP-A and SP-D could have therapeutic potential in neutralizing both current and future strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus as well as modulating the inflammation-mediated pathology associated with COVID-19. A recombinant fragment of human (rfh)SP-D has recently been shown to neutralize SARS-CoV-2. Further work investigating the potential therapeutic role of SP-A and SP-D in COVID-19 and other infectious and inflammatory diseases is indicated.


2017 ◽  
Vol 131 (14) ◽  
pp. 1737-1762 ◽  
Author(s):  
S. Rameeza Allie ◽  
Troy D. Randall

Mucosal surfaces, such as the respiratory epithelium, are directly exposed to the external environment and therefore, are highly susceptible to viral infection. As a result, the respiratory tract has evolved a variety of innate and adaptive immune defenses in order to prevent viral infection or promote the rapid destruction of infected cells and facilitate the clearance of the infecting virus. Successful adaptive immune responses often lead to a functional state of immune memory, in which memory lymphocytes and circulating antibodies entirely prevent or lessen the severity of subsequent infections with the same virus. This is also the goal of vaccination, although it is difficult to vaccinate in a way that mimics respiratory infection. Consequently, some vaccines lead to robust systemic immune responses, but relatively poor mucosal immune responses that protect the respiratory tract. In addition, adaptive immunity is not without its drawbacks, as overly robust inflammatory responses may lead to lung damage and impair gas exchange or exacerbate other conditions, such as asthma or chronic obstructive pulmonary disease (COPD). Thus, immune responses to respiratory viral infections must be strong enough to eliminate infection, but also have mechanisms to limit damage and promote tissue repair in order to maintain pulmonary homeostasis. Here, we will discuss the components of the adaptive immune system that defend the host against respiratory viral infections.


2021 ◽  
Vol 22 (16) ◽  
pp. 8860
Author(s):  
Nataly Sanhueza ◽  
Ricardo Fuentes ◽  
Andrea Aguilar ◽  
Beatriz Carnicero ◽  
Karina Vega ◽  
...  

Background: The communication between the brain and the immune system is a cornerstone in animal physiology. This interaction is mediated by immune factors acting in both health and pathogenesis, but it is unclear how these systems molecularly and mechanistically communicate under changing environmental conditions. Behavioural fever is a well-conserved immune response that promotes dramatic changes in gene expression patterns during ectotherms’ thermoregulatory adaptation, including those orchestrating inflammation. However, the molecular regulators activating the inflammatory reflex in ectotherms remain unidentified. Methods: We revisited behavioural fever by providing groups of fish a thermal gradient environment during infection. Our novel experimental setup created temperature ranges in which fish freely moved between different thermal gradients: (1) wide thermoregulatory range; T° = 6.4 °C; and (2) restricted thermoregulatory range; T° = 1.4 °C. The fish behaviour was investigated during 5-days post-viral infection. Blood, spleen, and brain samples were collected to determine plasmatic pro- and anti-inflammatory cytokine levels. To characterize genes’ functioning during behavioural fever, we performed a transcriptomic profiling of the fish spleen. We also measured the activity of neurotransmitters such as norepinephrine and acetylcholine in brain and peripheral tissues. Results: We describe the first set of the neural components that control inflammatory modulation during behavioural fever. We identified a neuro-immune crosstalk as a potential mechanism promoting the fine regulation of inflammation. The development of behavioural fever upon viral infection triggers a robust inflammatory response in vivo, establishing an activation threshold after infection in several organs, including the brain. Thus, temperature shifts strongly impact on neural tissue, specifically on the inflammatory reflex network activation. At the molecular level, behavioural fever causes a significant increase in cholinergic neurotransmitters and their receptors’ activity and key anti-inflammatory factors such as cytokine Il10 and Tgfβ in target tissues. Conclusion: These results reveal a cholinergic neuronal-based mechanism underlying anti-inflammatory responses under induced fever. We performed the first molecular characterization of the behavioural fever response and inflammatory reflex activation in mobile ectotherms, identifying the role of key regulators of these processes. These findings provide genetic entry points for functional studies of the neural–immune adaptation to infection and its protective relevance in ectotherm organisms.


2019 ◽  
Author(s):  
Sonia Kołt ◽  
Tomasz Janiszewski ◽  
Dion Kaiserman ◽  
Sylwia Modrzycka ◽  
Scott J. Snipas ◽  
...  

AbstractCytotoxic T-lymphocytes (CTLs) and natural killer cells (NKs) kill compromised cells to defend against tumor and viral infections. Both effector cell types use multiple strategies to induce target cell death including Fas/CD95 activation; and the release of perforin and a group of lymphocyte granule serine proteases called granzymes. Granzymes have relatively broad and overlapping substrate specificities and may hydrolyze a wide range of peptidic epitopes; it is therefore challenging to identify their natural and synthetic substrates and to distinguish their localization and functions. Here, we present a specific and potent substrate, an inhibitor, and an activity-based probe of Granzyme A (GrA) that can be used to follow functional GrA in cells.


2019 ◽  
Vol 94 (5) ◽  
Author(s):  
Hao Zhou ◽  
Michelle Møhlenberg ◽  
Ewa Terczyńska-Dyla ◽  
Kasper Grønbjerg Winther ◽  
Nanna Hougaard Hansen ◽  
...  

ABSTRACT Interferon lambda 4 (IFN-λ4) is a recently identified enigmatic member of the interferon (IFN) lambda family. Genetic data suggest that the IFNL4 gene acts in a proviral and anti-inflammatory manner in patients. However, the protein is indistinguishable in vitro from the other members of the interferon lambda family. We have investigated the gene regulation of IFNL4 in detail and found that it differs radically from that of canonical antiviral interferons. Being induced by viral infection is a defining characteristic of interferons, but viral infection or overexpression of members of the interferon regulatory factor (IRF) family of transcription factors only leads to a minute induction of IFNL4. This behavior is evolutionarily conserved and can be reversed by inserting a functional IRF3 binding site into the IFNL4 promoter. Thus, the regulation of the IFNL4 gene is radically different and might explain some of the atypical phenotypes associated with the IFNL4 gene in humans. IMPORTANCE Recent genetic evidence has highlighted how the IFNL4 gene acts in a counterintuitive manner, as patients with a nonfunctional IFNL4 gene exhibit increased clearance of hepatitis C virus (HCV) but also increased liver inflammation. This suggests that the IFNL4 gene acts in a proviral and anti-inflammatory manner. These surprising but quite clear genetic data have prompted an extensive examination of the basic characteristics of the IFNL4 gene and its gene product, interferon lambda 4 (IFN-λ4). We have investigated the expression of the IFNL4 gene and found it to be poorly induced by viral infections. A thorough investigation of the IFNL4 promoter revealed a highly conserved and functional promoter, but also one that lacks the defining characteristic of interferons (IFNs), i.e., the ability to be effectively induced by viral infections. We suggest that the unique function of the IFNL4 gene is related to its noncanonical transcriptional regulation.


2021 ◽  
Vol 22 (15) ◽  
pp. 8004
Author(s):  
Edna Ondari ◽  
Esther Calvino-Sanles ◽  
Nicholas J. First ◽  
Monica C. Gestal

Eosinophils are granulocytes primarily associated with TH2 responses to parasites or immune hyper-reactive states, such as asthma, allergies, or eosinophilic esophagitis. However, it does not make sense from an evolutionary standpoint to maintain a cell type that is only specific for parasitic infections and that otherwise is somehow harmful to the host. In recent years, there has been a shift in the perception of these cells. Eosinophils have recently been recognized as regulators of immune homeostasis and suppressors of over-reactive pro-inflammatory responses by secreting specific molecules that dampen the immune response. Their role during parasitic infections has been well investigated, and their versatility during immune responses to helminths includes antigen presentation as well as modulation of T cell responses. Although it is known that eosinophils can present antigens during viral infections, there are still many mechanistic aspects of the involvement of eosinophils during viral infections that remain to be elucidated. However, are eosinophils able to respond to bacterial infections? Recent literature indicates that Helicobacter pylori triggers TH2 responses mediated by eosinophils; this promotes anti-inflammatory responses that might be involved in the long-term persistent infection caused by this pathogen. Apparently and on the contrary, in the respiratory tract, eosinophils promote TH17 pro-inflammatory responses during Bordetella bronchiseptica infection, and they are, in fact, critical for early clearance of bacteria from the respiratory tract. However, eosinophils are also intertwined with microbiota, and up to now, it is not clear if microbiota regulates eosinophils or vice versa, or how this connection influences immune responses. In this review, we highlight the current knowledge of eosinophils as regulators of pro and anti-inflammatory responses in the context of both infection and naïve conditions. We propose questions and future directions that might open novel research avenues in the future.


Sign in / Sign up

Export Citation Format

Share Document