scholarly journals Regulation of Pyrroloquinoline Quinone-Dependent Glucose Dehydrogenase Activity in the Model Rhizosphere-Dwelling Bacterium Pseudomonas putida KT2440

2016 ◽  
Vol 82 (16) ◽  
pp. 4955-4964 ◽  
Author(s):  
Ran An ◽  
Luke A. Moe

ABSTRACTSoil-dwelling microbes solubilize mineral phosphates by secreting gluconic acid, which is produced from glucose by a periplasmic glucose dehydrogenase (GDH) that requires pyrroloquinoline quinone (PQQ) as a redox coenzyme. While GDH-dependent phosphate solubilization has been observed in numerous bacteria, little is known concerning the mechanism by which this process is regulated. Here we use the model rhizosphere-dwelling bacteriumPseudomonas putidaKT2440 to explore GDH activity and PQQ synthesis, as well as gene expression of the GDH-encoding gene (gcd) and PQQ biosynthesis genes (pqqoperon) while under different growth conditions. We also use reverse transcription-PCR to identify transcripts from thepqqoperon to more accurately map the operon structure. GDH specific activity and PQQ levels vary according to growth condition, with the highest levels of both occurring when glucose is used as the sole carbon source and under conditions of low soluble phosphate. Under these conditions, however, PQQ levels limitin vitrophosphate solubilization. GDH specific activity data correlate well withgcdgene expression data, and the levels of expression of thepqqFandpqqBgenes mirror the levels of PQQ synthesized, suggesting that one or both of these genes may serve to modulate PQQ levels according to the growth conditions. Thepqqgene cluster (pqqFABCDEG) encodes at least two independent transcripts, and expression of thepqqFgene appears to be under the control of an independent promoter and terminator.IMPORTANCEPlant growth promotion can be enhanced by soil- and rhizosphere-dwelling bacteria by a number of different methods. One method is by promoting nutrient acquisition from soil. Phosphorus is an essential nutrient that plants obtain through soil, but in many cases it is locked up in forms that are not available for plant uptake. Bacteria such as the model bacteriumPseudomonas putidaKT2440 can solubilize insoluble soil phosphates by secreting gluconic acid. This chemical is produced from glucose by the activity of the bacterial enzyme glucose dehydrogenase, which requires a coenzyme called PQQ. Here we have studied how the glucose dehydrogenase enzyme and the PQQ coenzyme are regulated according to differences in bacterial growth conditions. We determined that glucose dehydrogenase activity and PQQ production are optimal under conditions when the bacterium is grown with glucose as the sole carbon source and under conditions of low soluble phosphate.

2011 ◽  
Vol 77 (20) ◽  
pp. 7345-7354 ◽  
Author(s):  
Joana Beatrice Meyer ◽  
Michele Frapolli ◽  
Christoph Keel ◽  
Monika Maurhofer

ABSTRACTMany root-colonizing pseudomonads are able to promote plant growth by increasing phosphate availability in soil through solubilization of poorly soluble rock phosphates. The major mechanism of phosphate solubilization by pseudomonads is the secretion of gluconic acid, which requires the enzyme glucose dehydrogenase and its cofactor pyrroloquinoline quinone (PQQ). The main aim of this study was to evaluate whether a PQQ biosynthetic gene is suitable to study the phylogeny of phosphate-solubilizing pseudomonads. To this end, two new primers, which specifically amplify thepqqCgene of thePseudomonasgenus, were designed.pqqCfragments were amplified and sequenced from aPseudomonasstrain collection and from a natural wheat rhizosphere population using cultivation-dependent and cultivation-independent approaches. Phylogenetic trees based onpqqCsequences were compared to trees obtained with the two concatenated housekeeping genesrpoDandgyrB. For bothpqqCandrpoD-gyrB, similar main phylogenetic clusters were found. However, in thepqqCbut not in therpoD-gyrBtree, the group of fluorescent pseudomonads producing the antifungal compounds 2,4-diacetylphloroglucinol and pyoluteorin was located outside thePseudomonas fluorescensgroup.pqqCsequences from isolated pseudomonads were differently distributed among the identified phylogenetic groups thanpqqCsequences derived from the cultivation-independent approach. ComparingpqqCphylogeny and phosphate solubilization activity, we identified one phylogenetic group with high solubilization activity. In summary, we demonstrate that the genepqqCis a novel molecular marker that can be used complementary to housekeeping genes for studying the diversity and evolution of plant-beneficial pseudomonads.


2015 ◽  
Vol 82 (2) ◽  
pp. 724-731 ◽  
Author(s):  
Hong-Jun Chao ◽  
Yan-Fei Chen ◽  
Ti Fang ◽  
Ying Xu ◽  
Wei E. Huang ◽  
...  

ABSTRACTIn addition to growing onp-cresol,Pseudomonas putidaNCIMB 9866 is the only reported strain capable of aerobically growing on 2,4-xylenol, which is listed as a priority pollutant by the U.S. Environmental Protection Agency. Several enzymes involved in the oxidation of thepara-methyl group, as well as the corresponding genes, have previously been reported. The enzyme catalyzing oxidation of the catabolic intermediate 4-hydroxyisophthalate to the ring cleavage substrate protocatechuate was also purified from strain NCIMB 9866, but its genetic determinant is still unavailable. In this study, the genehipH, encoding 4-hydroxyisophthalate hydroxylase, from strain NCIMB 9866 was cloned by transposon mutagenesis. Purified recombinant HipH-His6was found to be a dimer protein with a molecular mass of approximately 110 kDa. HipH-His6catalyzed the hydroxylation of 4-hydroxyisophthalate to protocatechuate with a specific activity of 1.54 U mg−1and showed apparentKmvalues of 11.40 ± 3.05 μM for 4-hydroxyisophthalate with NADPH and 11.23 ± 2.43 μM with NADH and similarKmvalues for NADPH and NADH (64.31 ± 13.16 and 72.76 ± 12.06 μM, respectively). The identity of protocatechuate generated from 4-hydroxyisophthalate hydroxylation by HipH-His6has also been confirmed by high-performance liquid chromatography and mass spectrometry. Gene transcriptional analysis, gene knockout, and complementation indicated thathipHis essential for 2,4-xylenol catabolism but not forp-cresol catabolism in this strain. This fills a gap in our understanding of the gene that encodes a critical step in 2,4-xylenol catabolism and also provides another example of biochemical and genetic diversity of microbial catabolism of structurally similar compounds.


2012 ◽  
Vol 11 (12) ◽  
pp. 1503-1511 ◽  
Author(s):  
Michele Saliola ◽  
Angela Tramonti ◽  
Claudio Lanini ◽  
Samantha Cialfi ◽  
Daniela De Biase ◽  
...  

ABSTRACTIn the yeastKluyveromyces lactis, glucose 6-phosphate dehydrogenase (G6PDH) is detected as two differently migrating forms on native polyacrylamide gels. The pivotal metabolic role of G6PDH inK. lactisled us to investigate the mechanism controlling the two activities in respiratory and fermentative mutant strains. An extensive analysis of these mutants showed that the NAD+(H)/NADP+(H)-dependent cytosolic alcohol (ADH) and aldehyde (ALD) dehydrogenase balance affects the expression of the G6PDH activity pattern. Under fermentative/ethanol growth conditions, the concomitant activation of ADH and ALD activities led to cytosolic accumulation of NADPH, triggering an alteration in the oligomeric state of the G6PDH caused by displacement/release of the structural NADP+bound to each subunit of the enzyme. The new oligomeric G6PDH form with faster-migrating properties increases as a consequence of intracellular redox unbalance/NADPH accumulation, which inhibits G6PDH activityin vivo. The appearance of a new G6PDH-specific activity band, following incubation ofSaccharomyces cerevisiaeand human cellular extracts with NADP+, also suggests that a regulatory mechanism of this activity through NADPH accumulation is highly conserved among eukaryotes.


2015 ◽  
Vol 197 (8) ◽  
pp. 1322-1329 ◽  
Author(s):  
Kiwamu Umezawa ◽  
Kouta Takeda ◽  
Takuya Ishida ◽  
Naoki Sunagawa ◽  
Akiko Makabe ◽  
...  

A gene encoding an enzyme similar to a pyrroloquinoline quinone (PQQ)-dependent sugar dehydrogenase from filamentous fungi, which belongs to new auxiliary activities (AA) family 12 in the CAZy database, was cloned fromPseudomonas aureofaciens. The deduced amino acid sequence of the cloned enzyme showed only low homology to previously characterized PQQ-dependent enzymes, and multiple-sequence alignment analysis showed that the enzyme lacks one of the three conserved arginine residues that function as PQQ-binding residues in known PQQ-dependent enzymes. The recombinant enzyme was heterologously expressed in anEscherichia coliexpression system for further characterization. The UV-visible (UV-Vis) absorption spectrum of the oxidized form of the holoenzyme, prepared by incubating the apoenzyme with PQQ and CaCl2, revealed a broad peak at approximately 350 nm, indicating that the enzyme binds PQQ. With the addition of 2-keto-d-glucose (2KG) to the holoenzyme solution, a sharp peak appeared at 331 nm, attributed to the reduction of PQQ bound to the enzyme, whereas no effect was observed upon 2KG addition to authentic PQQ. Enzymatic assay showed that the recombinant enzyme specifically reacted with 2KG in the presence of an appropriate electron acceptor, such as 2,6-dichlorophenol indophenol, when PQQ and CaCl2were added.1H nuclear magnetic resonance (1H-NMR) analysis of reaction products revealed 2-keto-d-gluconic acid (2KGA) as the main product, clearly indicating that the recombinant enzyme oxidizes the C-1 position of 2KG. Therefore, the enzyme was identified as a PQQ-dependent 2KG dehydrogenase (Pa2KGDH). Considering the high substrate specificity, the physiological function ofPa2KGDH may be for production of 2KGA.


2020 ◽  
Vol 11 ◽  
Author(s):  
Luciana F. Brito ◽  
Marina Gil López ◽  
Lucas Straube ◽  
Luciane M. P. Passaglia ◽  
Volker F. Wendisch

Due to the importance of phosphorus (P) in agriculture, crop inoculation with phosphate-solubilizing bacteria is a relevant subject of study. Paenibacillus sonchi genomovar Riograndensis SBR5 is a promising candidate for crop inoculation, as it can fix nitrogen and excrete ammonium at a remarkably high rate. However, its trait of phosphate solubilization (PS) has not yet been studied in detail. Here, differential gene expression and functional analyses were performed to characterize PS in this bacterium. SBR5 was cultivated with two distinct P sources: NaH2PO4 as soluble phosphate source (SPi) and hydroxyapatite as insoluble phosphate source (IPi). Total RNA of SBR5 cultivated in those two conditions was isolated and sequenced, and bacterial growth and product formation were monitored. In the IPi medium, the expression of 68 genes was upregulated, whereas 100 genes were downregulated. Among those, genes involved in carbon metabolism, including those coding for subunits of 2-oxoglutarate dehydrogenase, were identified. Quantitation of organic acids showed that the production of tricarboxylic acid cycle-derived organic acids was reduced in IPi condition, whereas acetate and gluconate were overproduced. Increased concentrations of proline, trehalose, and glycine betaine revealed active osmoprotection during growth in IPi. The cultivation with hydroxyapatite also caused the reduction in the motility of SBR5 cells as a response to Pi depletion at the beginning of its growth. SBR5 was able to solubilize hydroxyapatite, which suggests that this organism is a promising phosphate-solubilizing bacterium. Our findings are the initial step in the elucidation of the PS process in P. sonchi SBR5 and will be a valuable groundwork for further studies of this organism as a plant growth-promoting rhizobacterium.


mSphere ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Ting Y. Wong ◽  
Jesse M. Hall ◽  
Evan S. Nowak ◽  
Dylan T. Boehm ◽  
Laura A. Gonyar ◽  
...  

ABSTRACTBordetella pertussiscauses the disease whooping cough through coordinated control of virulence factors by theBordetellavirulence gene system. Microarrays and, more recently, RNA sequencing (RNA-seq) have been used to describein vitrogene expression profiles ofB. pertussisand other pathogens. In previous studies, we have analyzed thein vitrogene expression profiles ofB. pertussis, and we hypothesize that the infection transcriptome profilein vivois significantly different from that under laboratory growth conditions. To study the infection transcriptome ofB. pertussis, we developed a simple filtration technique for isolation of bacteria from infected lungs. The work flow involves filtering the bacteria out of the lung homogenate using a 5-μm-pore-size syringe filter. The captured bacteria are then lysed to isolate RNA for Illumina library preparation and RNA-seq analysis. Upon comparing thein vitroandin vivogene expression profiles, we identified 351 and 255 genes as activated and repressed, respectively, during murine lung infection. As expected, numerous genes associated with virulent-phase growth were activated in the murine host, including pertussis toxin (PT), the PT secretion apparatus, and the type III secretion system. A significant number of genes encoding iron acquisition and heme uptake proteins were highly expressed during infection, supporting iron acquisition as critical forB. pertussissurvivalin vivo. Numerous metabolic genes were repressed during infection. Overall, these data shed light on the gene expression profile ofB. pertussisduring infection, and this method will facilitate efforts to understand how this pathogen causes infection.IMPORTANCEIn vitrogrowth conditions for bacteria do not fully recapitulate the host environment. RNA sequencing transcriptome analysis allows for the characterization of the infection gene expression profiles of pathogens in complex environments. Isolation of the pathogen from infected tissues is critical because of the large amounts of host RNA present in crude lysates of infected organs. A filtration method was developed that enabled enrichment of the pathogen RNA for RNA-seq analysis. The resulting data describe the “infection transcriptome” ofB. pertussisin the murine lung. This strategy can be utilized for pathogens in other hosts and, thus, expand our knowledge of what bacteria express during infection.


2016 ◽  
Vol 60 (6) ◽  
pp. 3608-3616 ◽  
Author(s):  
Julie V. Early ◽  
Allen Casey ◽  
Maria Angeles Martinez-Grau ◽  
Isabel C. Gonzalez Valcarcel ◽  
Michal Vieth ◽  
...  

Mycobacterium tuberculosisis a global pathogen of huge importance which can adapt to several host niche environments in which carbon source availability is likely to vary. We developed and ran a phenotypic screen using butyrate as the sole carbon source to be more reflective of the host lung environment. We screened a library of ∼87,000 small compounds and identified compounds which demonstrated good antitubercular activity againstM. tuberculosisgrown with butyrate but not with glucose as the carbon source. Among the hits, we identified an oxadiazole series (six compounds) which had specific activity againstM. tuberculosisbut which lacked cytotoxicity against mammalian cells.


2017 ◽  
Vol 199 (9) ◽  
Author(s):  
Meredith S. Wright ◽  
Stephanie Mountain ◽  
Karen Beeri ◽  
Mark D. Adams

ABSTRACT Insertion sequence (IS) elements are found throughout bacterial genomes and contribute to genome variation by interrupting genes or altering gene expression. Few of the more than 30 IS elements described in Acinetobacter baumannii have been characterized for transposition activity or expression effects. A targeted sequencing method, IS-seq, was developed to efficiently map the locations of new insertion events in A. baumannii genomes and was used to identify novel IS sites following growth in the presence of hydrogen peroxide, which causes oxidative stress. Serial subculture in the presence of subinhibitory concentrations of hydrogen peroxide led to rapid selection of cells carrying an ISAba1 element upstream of the catalase-peroxidase gene katG. Several additional sites for the elements ISAba1, ISAba13, ISAba25, ISAba26, and ISAba125 were found at low abundance after serial subculture, indicating that each element is active and contributes to genetic variation that may be subject to selection. Following hydrogen peroxide exposure, rapid changes in gene expression were observed in genes related to iron homeostasis. The IS insertions adjacent to katG resulted in more than 20-fold overexpression of the gene and increased hydrogen peroxide tolerance. IMPORTANCE Insertion sequences (IS) contribute to genomic and phenotypic variation in many bacterial species, but little is known about how transposition rates vary among elements or how selective pressure influences this process. A new method for identifying new insertion locations that arise under experimental growth conditions in the genome, termed IS-seq, was developed and tested with cells grown in the presence of hydrogen peroxide, which causes oxidative stress. Gene expression changes in response to hydrogen peroxide exposure are similar to those observed in other species and include genes that control free iron concentrations. New IS insertions adjacent to a gene encoding a catalase enzyme confirm that IS elements can rapidly contribute to adaptive variation in the presence of selection.


2017 ◽  
Vol 83 (7) ◽  
Author(s):  
Klara Bojanovič ◽  
Isotta D'Arrigo ◽  
Katherine S. Long

ABSTRACTBacteria cope with and adapt to stress by modulating gene expression in response to specific environmental cues. In this study, the transcriptional response ofPseudomonas putidaKT2440 to osmotic, oxidative, and imipenem stress conditions at two time points was investigated via identification of differentially expressed mRNAs and small RNAs (sRNAs). A total of 440 sRNA transcripts were detected, of which 10% correspond to previously annotated sRNAs, 40% to novel intergenic transcripts, and 50% to novel transcripts antisense to annotated genes. Each stress elicits a unique response as far as the extent and dynamics of the transcriptional changes. Nearly 200 protein-encoding genes exhibited significant changes in all stress types, implicating their participation in a general stress response. Almost half of the sRNA transcripts were differentially expressed under at least one condition, suggesting possible functional roles in the cellular response to stress conditions. The data show a larger fraction of differentially expressed sRNAs than of mRNAs with >5-fold expression changes. The work provides detailed insights into the mechanisms through whichP. putidaresponds to different stress conditions and increases understanding of bacterial adaptation in natural and industrial settings.IMPORTANCEThis study maps the complete transcriptional response ofP. putidaKT2440 to osmotic, oxidative, and imipenem stress conditions at short and long exposure times. Over 400 sRNA transcripts, consisting of both intergenic and antisense transcripts, were detected, increasing the number of identified sRNA transcripts in the strain by a factor of 10. Unique responses to each type of stress are documented, including both the extent and dynamics of the gene expression changes. The work adds rich detail to previous knowledge of stress response mechanisms due to the depth of the RNA sequencing data. Almost half of the sRNAs exhibit significant expression changes under at least one condition, suggesting their involvement in adaptation to stress conditions and identifying interesting candidates for further functional characterization.


2012 ◽  
Vol 11 (7) ◽  
pp. 896-904 ◽  
Author(s):  
Saranna Fanning ◽  
Wenjie Xu ◽  
Norma Solis ◽  
Carol A. Woolford ◽  
Scott G. Filler ◽  
...  

ABSTRACTCandida albicansis a causative agent of oropharyngeal candidiasis (OPC), a biofilm-like infection of the oral mucosa. Biofilm formation depends upon theC. albicanstranscription factor Bcr1, and previous studies indicate that Bcr1 is required for OPC in a mouse model of infection. Here we have used a nanoString gene expression measurement platform to elucidate the role of Bcr1 in OPC-related gene expression. We chose for assays a panel of 134 genes that represent a range of morphogenetic and cell cycle functions as well as environmental and stress response pathways. We assayed gene expression in whole infected tongue samples. The results sketch a portrait ofC. albicansgene expression in which numerous stress response pathways are activated during OPC. This one set of experiments identifies 64 new genes with significantly altered RNA levels during OPC, thus increasing substantially the number of known genes in this expression class. Thebcr1Δ/Δ mutant had a much more limited gene expression defect during OPC infection than previously reported forin vitrogrowth conditions. Among major functional Bcr1 targets, we observed thatALS3was Bcr1 dependentin vivowhileHWP1was not. We used null mutants and complemented strains to verify that Bcr1 and Hwp1 are required for OPC infection in this model. The role of Als3 is transient and mild, though significant. Our findings suggest that the versatility ofC. albicansas a pathogen may reflect its ability to persist in the face of multiple stresses and underscore that transcriptional circuitry during infection may be distinct from that detailed duringin vitrogrowth.


Sign in / Sign up

Export Citation Format

Share Document