scholarly journals Dietary Supplementation with Sodium Sulfate Improves Rumen Fermentation, Fiber Digestibility, and the Plasma Metabolome through Modulation of Rumen Bacterial Communities in Steers

2020 ◽  
Vol 86 (22) ◽  
Author(s):  
Yuchao Zhao ◽  
Biao Xie ◽  
Jian Gao ◽  
Guangyong Zhao

ABSTRACT Six steers were used to study the effects of dietary supplementation with sodium sulfate (Na2SO4) on rumen fermentation, nutrient digestion, rumen microbiota, and plasma metabolites. The animals were fed a basal ration with Na2SO4 added at 0 g/day (sulfur [S] content of 0.115% dry matter [DM]), 20 g/day (S at 0.185% DM), or 40 g/day (S at 0.255% DM) in a replicate 3-by-3 Latin square design. The results indicated that supplementing with Na2SO4 increased the ruminal concentration of total volatile fatty acids, the molar proportions of acetate and butyrate, the ruminal concentrations of microbial protein, SO42−-S, and S2−-S, and the digestibility of fiber, while it decreased the molar proportion of propionate and the ruminal concentration of ammonia nitrogen. Supplementing with Na2SO4 increased the diversity and the richness of rumen microbiota and the relative abundances of the phylum Firmicutes and genera Ruminococcus 2, Rikenellaceae RC9 gut group, and Desulfovibrio, whereas it decreased the relative abundances of the phylum Bacteroidetes and genera Prevotella 1, Prevotellaceae UCG-001, and Treponema 2. Supplementing with Na2SO4 also increased the plasma concentrations of amino acids (l-arginine, l-methionine, l-cysteine, and l-lysine), purine derivatives (xanthine and hypoxanthine), vitamins (thiamine and biotin), and lipids (acetylcarnitine and l-carnitine). It was concluded that supplementing the steer ration with Na2SO4 was beneficial for improving the rumen fermentation, fiber digestibility, and nutrient metabolism through modulating the rumen microbial community. IMPORTANCE Essential elements like nitrogen and sulfur greatly affect rumen fermentation and metabolism in ruminants. However, little knowledge is available on the effects of sulfur on the rumen microbiota and plasma metabolome. The results of the present trial demonstrated that supplementing the steer ration with sodium sulfate markedly improved rumen fermentation, fiber digestibility, and metabolism of amino acids, purine derivatives, and vitamins through effects on the ruminal microbiome. The facts obtained from the present trial clarified the possible mechanisms of the positive effects of sulfur on rumen fermentation and nutrient utilization.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christina D. Moon ◽  
Luis Carvalho ◽  
Michelle R. Kirk ◽  
Alan F. McCulloch ◽  
Sandra Kittelmann ◽  
...  

AbstractAnthelmintic treatment of adult ewes is widely practiced to remove parasite burdens in the expectation of increased ruminant productivity. However, the broad activity spectra of many anthelmintic compounds raises the possibility of impacts on the rumen microbiota. To investigate this, 300 grazing ewes were allocated to treatment groups that included a 100-day controlled release capsule (CRC) containing albendazole and abamectin, a long-acting moxidectin injection (LAI), and a non-treated control group (CON). Rumen bacterial, archaeal and protozoal communities at day 0 were analysed to identify 36 sheep per treatment with similar starting compositions. Microbiota profiles, including those for the rumen fungi, were then generated for the selected sheep at days 0, 35 and 77. The CRC treatment significantly impacted the archaeal community, and was associated with increased relative abundances of Methanobrevibacter ruminantium, Methanosphaera sp. ISO3-F5, and Methanomassiliicoccaceae Group 12 sp. ISO4-H5 compared to the control group. In contrast, the LAI treatment increased the relative abundances of members of the Veillonellaceae and resulted in minor changes to the bacterial and fungal communities by day 77. Overall, the anthelmintic treatments resulted in few, but highly significant, changes to the rumen microbiota composition.


2011 ◽  
Vol 163 (2-4) ◽  
pp. 136-142 ◽  
Author(s):  
Liguang Shi ◽  
Wenjuan Xun ◽  
Wenbin Yue ◽  
Chunxiang Zhang ◽  
Youshe Ren ◽  
...  

2021 ◽  
pp. 1-13
Author(s):  
Paul Tamayao ◽  
Gabriel O. Ribeiro ◽  
Tim A. McAllister ◽  
Kim H. Ominski ◽  
Atef M. Saleem ◽  
...  

This study investigated the effects of three pine-based biochar products on nutrient disappearance, total gas and methane (CH4) production, rumen fermentation, microbial protein synthesis, and rumen microbiota in a rumen simulation technique (RUSITEC) fed a barley-silage-based total mixed ration (TMR). Treatments consisted of 10 g TMR supplemented with no biochar (control) and three different biochars (CP016, CP024, and CP028) included at 20 g·kg−1 DM. Treatments were assigned to 16 fermenters (n = 4 per treatment) in two RUSITEC units in a randomized block design for a 17 d experimental period. Data were analyzed using MIXED procedure in SAS, with treatment and day of sampling as fixed effects and RUSITEC unit and fermenters as random effects. Biochar did not affect nutrient disappearance (P > 0.05), nor total gas or CH4, irrespective of unit of expression. The volatile fatty acid, NH3-N, total protozoa, and microbial protein synthesis were not affected by biochar inclusion (P > 0.05). Alpha and beta diversity and rumen microbiota families were not affected by biochar inclusion (P > 0.05). In conclusion, biochar did not reduce CH4 emissions nor affect nutrient disappearance, rumen fermentation, microbial protein synthesis, or rumen microbiota in the RUSITEC.


2018 ◽  
Vol 120 (12) ◽  
pp. 1321-1331 ◽  
Author(s):  
Hongnan Liu ◽  
Bie Tan ◽  
Bo Huang ◽  
Jianjun Li ◽  
Jing Wang ◽  
...  

AbstractCa2+-sensing receptor (CaSR) represents a potential therapeutic target for inflammatory bowel diseases and strongly prefers aromatic amino acid ligands. We investigated the regulatory effects of dietary supplementation with aromatic amino acids – tryptophan, phenylalanine and tyrosine (TPT) – on the CaSR signalling pathway and intestinal inflammatory response. The in vivo study was conducted with weanling piglets using a 2 × 2 factorial arrangement in a randomised complete block design. Piglets were fed a basal diet or a basal diet supplemented with TPT and with or without inflammatory challenge. The in vitro study was performed in porcine intestinal epithelial cell line to investigate the effects of TPT on inflammatory response using NPS-2143 to inhibit CaSR. Dietary supplementation of TPT alleviated histopathological injury and decreased myeloperoxidase activity in intestine challenged with lipopolysaccharide. Dietary supplementation of TPT decreased serum concentration of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, IL-12, granulocyte-macrophage colony-stimulating factor, TNF-α), as well as the mRNA abundances of pro-inflammatory cytokines in intestine but enhanced anti-inflammatory cytokines IL-4 and transforming growth factor-β mRNA levels compared with pigs fed control diet and infected by lipopolysaccharide. Supplementation of TPT increased CaSR and phospholipase Cβ2 protein levels, but decreased inhibitor of NF-κB kinase α/β and inhibitor of NF-κB (IκB) protein levels in the lipopolysaccharide-challenged piglets. When the CaSR signalling pathway was blocked by NPS-2143, supplementation of TPT decreased the CaSR protein level, but enhanced phosphorylated NF-κB and IκB levels in IPEC-J2 cells. To conclude, supplementation of aromatic amino acids alleviated intestinal inflammation as mediated through the CaSR signalling pathway.


1988 ◽  
Vol 36 (2) ◽  
pp. 127-143 ◽  
Author(s):  
W.A.G. Veen ◽  
J. Veling ◽  
Y.T. Bakker

In a crossover trial, 4 cows were given concentrates containing rapidly and slowly degradable protein in combination with prewilted grass silage. Diets were given in 2 equal daily portions according to DCP and net energy requirements. The trial consisted of 3 main periods of 3 weeks each, with faeces, urine and milk collected and measured during the final week. On 1 day during this week samples of rumen fluid were taken and on 2 days blood samples were taken, directly before the morning feed and 1, 2, 3, 4 and 8 h later. N digestibity and N retention were the same on both rations. A concentrate with slowly-degradable protein resulted in a significantly higher rumen pH and acetate:propionate ratio. Ammonia concn. tended to be lower. Slowly-degradable concentrate protein led to a significantly higher concn. of urea and a lower concn. of insulin in blood. The concn. of several of the essential amino acids, and of the glucogenic amino acids and glycine was significantly lower. There were no significant effects of type of protein on milk yield or milk composition, but there was a tendency for these parameters to increase with ration containing slowly-degradable protein. Results suggest the ration containing slowly-degradable concentrate protein produced a more even rumen fermentation, which promoted a higher acetate:propionate ration in the rumen. On this ration there was a tendency for more gluconeogenesis from amino acids to occur. (Abstract retrieved from CAB Abstracts by CABI’s permission)


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245739
Author(s):  
Inês Vieira da Silva ◽  
Bárbara P. Soares ◽  
Catarina Pimpão ◽  
Rui M. A. Pinto ◽  
Teresa Costa ◽  
...  

The regulation of glycerol permeability in the gastrointestinal tract is crucial to control fat deposition, lipolysis and gluconeogenesis. Knowing that the amino acid glutamine is a physiological regulator of gluconeogenesis, whereas cystine promotes adiposity, herein we investigated the effects of dietary supplementation with glutamine and cystine on the serum biochemical parameters of piglets fed on amino acid-enriched diets, as well as on the transcriptional profile of membrane water and glycerol channels aquaporins (AQPs) in the ileum portion of the small intestine and its impact on intestinal permeability. Twenty male piglets with an initial body weight of 8.8 ± 0.89 kg were allocated to four dietary treatments (n = 5) and received, during a four week-period, a basal diet without supplementation (control) or supplemented with 8 kg/ton of glutamine (Gln), cystine (Cys) or the combination of the two amino acids in equal proportions (Gln + Cys). Most biochemical parameters were found improved in piglets fed Gln and Cys diet. mRNA levels of AQP3 were found predominant over the others. Both amino acids, individually or combined, were responsible for a consistent downregulation of AQP1, AQP7 and AQP10, without impacting on water permeability. Conversely, Cys enriched diet upregulated AQP3 enhancing basolateral membranes glycerol permeability and downregulating glycerol kinase (GK) of intestinal cells. Altogether, our data reveal that amino acids dietary supplementation can modulate intestinal AQPs expression and unveil AQP3 as a promising target for adipogenesis regulation.


2013 ◽  
Vol 94 (9) ◽  
pp. 1886-1895 ◽  
Author(s):  
Ruiyang Zhang ◽  
Weiyun Zhu ◽  
Wen Zhu ◽  
Jianxin Liu ◽  
Shengyong Mao

Sign in / Sign up

Export Citation Format

Share Document