scholarly journals Molecular Mechanisms Contributing to the Growth and Physiology of an Extremophile Cultured with Dielectric Heating

2016 ◽  
Vol 82 (20) ◽  
pp. 6233-6246 ◽  
Author(s):  
Kathleen D. Cusick ◽  
Baochuan Lin ◽  
Anthony P. Malanoski ◽  
Sarah M. Strycharz-Glaven ◽  
Allison Cockrell-Zugell ◽  
...  

ABSTRACTThe effect of microwave frequency electromagnetic fields on living microorganisms is an active and highly contested area of research. One of the major drawbacks to using mesophilic organisms to study microwave radiation effects is the unavoidable heating of the organism, which has limited the scale (<5 ml) and duration (<1 h) of experiments. However, the negative effects of heating a mesophile can be mitigated by employing thermophiles (organisms able to grow at temperatures of >60°C). This study identified changes in global gene expression profiles during the growth ofThermus scotoductusSA-01 at 65°C using dielectric (2.45 GHz, i.e., microwave) heating. RNA sequencing was performed on cultures at 8, 14, and 24 h after inoculation to determine the molecular mechanisms contributing to long-term cellular growth and survival under microwave heating conditions. Over the course of growth, genes associated with amino acid metabolism, carbohydrate metabolism, and defense mechanisms were upregulated; the number of repressed genes with unknown function increased; and at all time points, transposases were upregulated. Genes involved in cell wall biogenesis and elongation were also upregulated, consistent with the distinct elongated cell morphology observed after 24 h using microwave heating. Analysis of the global differential gene expression data enabled the identification of molecular processes specific to the response ofT. scotoductusSA-01 to dielectric heating during growth.IMPORTANCEThe residual heating of living organisms in the microwave region of the electromagnetic spectrum has complicated the identification of radiation-only effects using microorganisms for 50 years. A majority of the previous experiments used either mature cells or short exposure times with low-energy high-frequency radiation. Using global differential gene expression data, we identified molecular processes unique to dielectric heating usingThermus scotoductusSA-01 cultured over 30 h in a commercial microwave digestor. Genes associated with amino acid metabolism, carbohydrate metabolism, and defense mechanisms were upregulated; the number of repressed genes with unknown function increased; and at all time points, transposases were upregulated. These findings serve as a platform for future studies with mesophiles in order to better understand the response of microorganisms to microwave radiation.

2011 ◽  
Vol 77 (10) ◽  
pp. 3406-3412 ◽  
Author(s):  
Gino Vrancken ◽  
Luc De Vuyst ◽  
Tom Rimaux ◽  
Joke Allemeersch ◽  
Stefan Weckx

ABSTRACTSourdough is a very competitive and challenging environment for microorganisms. Usually, a stable microbiota composed of lactic acid bacteria (LAB) and yeasts dominates this ecosystem. Although sourdough is rich in carbohydrates, thus providing an ideal environment for microorganisms to grow, its low pH presents a particular challenge. The nature of the adaptation to this low pH was investigated forLactobacillus plantarumIMDO 130201, an isolate from a laboratory wheat sourdough fermentation. Batch fermentations were carried out in wheat sourdough simulation medium, and total RNA was isolated from mid-exponential-growth-phase cultures, followed by differential gene expression analysis using a LAB functional gene microarray. At low pH values, an increased expression of genes involved in peptide and amino acid metabolism was found as well as that of genes involved in plantaricin production and lipoteichoic acid biosynthesis. The results highlight cellular mechanisms that allowL. plantarumto function at a low environmental pH.


mSphere ◽  
2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Louisi Souza de Oliveira ◽  
Diogo Antonio Tschoeke ◽  
Ana Carolina Rubem Magalhães Lopes ◽  
Daniela Bueno Sudatti ◽  
Pedro Milet Meirelles ◽  
...  

ABSTRACT Marine bacteria are part of the healthy microbiota associated with seaweeds, but some species, such as Vibrio spp., are frequently associated with disease outbreaks, especially in economically valuable cultures. In this context, the ability of seaweeds to recognize microbes and, when necessary, activate defense mechanisms is essential for their survival. However, studies dedicated to understanding the molecular components of the immune response in seaweeds are rare and restricted to indirect stimulus. This work provides an unprecedentedly large-scale evaluation of the transcriptional changes involved in microbe recognition, cellular signaling, and defense in the red seaweed Laurencia dendroidea in response to the marine bacterium Vibrio madracius. By expanding knowledge about seaweed-bacterium interactions and about the integrated defensive system in seaweeds, this work offers the basis for the development of tools to increase the resistance of cultured seaweeds to bacterial infections. The ability to recognize and respond to the presence of microbes is an essential strategy for seaweeds to survive in the marine environment, but understanding of molecular seaweed-microbe interactions is limited. Laurencia dendroidea clones were inoculated with the marine bacterium Vibrio madracius. The seaweed RNA was sequenced, providing an unprecedentedly high coverage of the transcriptome of Laurencia, and the gene expression levels were compared between control and inoculated samples after 24, 48, and 72 h. Transcriptomic changes in L. dendroidea in the presence of V. madracius include the upregulation of genes that participate in signaling pathways described here for the first time as a response of seaweeds to microbes. Genes coding for defense-related transcription activators, reactive oxygen species metabolism, terpene biosynthesis, and energy conversion pathways were upregulated in inoculated samples of L. dendroidea, indicating an integrated defensive system in seaweeds. This report contributes significantly to the current knowledge about the molecular mechanisms involved in the highly dynamic seaweed-bacterium interactions. IMPORTANCE Marine bacteria are part of the healthy microbiota associated with seaweeds, but some species, such as Vibrio spp., are frequently associated with disease outbreaks, especially in economically valuable cultures. In this context, the ability of seaweeds to recognize microbes and, when necessary, activate defense mechanisms is essential for their survival. However, studies dedicated to understanding the molecular components of the immune response in seaweeds are rare and restricted to indirect stimulus. This work provides an unprecedentedly large-scale evaluation of the transcriptional changes involved in microbe recognition, cellular signaling, and defense in the red seaweed Laurencia dendroidea in response to the marine bacterium Vibrio madracius. By expanding knowledge about seaweed-bacterium interactions and about the integrated defensive system in seaweeds, this work offers the basis for the development of tools to increase the resistance of cultured seaweeds to bacterial infections.


2014 ◽  
Vol 82 (4) ◽  
pp. 1511-1522 ◽  
Author(s):  
Zhiming Ouyang ◽  
Jianli Zhou ◽  
Michael V. Norgard

ABSTRACTBorrelia burgdorferiencodes a homologue of the bacterial carbon storage regulator A (CsrA). Recently, it was reported that CsrA contributes toB. burgdorferiinfectivity and is required for the activation of the central RpoN-RpoS regulatory pathway. However, many questions concerning the function of CsrA inB. burgdorferigene regulation remain unanswered. In particular, there are conflicting reports concerning the molecular details of how CsrA may modulaterpoSexpression and, thus, how CsrA may influence the RpoN-RpoS pathway inB. burgdorferi. To address these key discrepancies, we examined the role of CsrA in differential gene expression in the Lyme disease spirochete. Upon engineering an induciblecsrAexpression system inB. burgdorferi, controlled hyperexpression of CsrA in a merodiploid strain did not significantly alter the protein and transcript levels ofbosR,rpoS, and RpoS-dependent genes (such asospCanddbpA). In addition, we constructed isogeniccsrAmutants in two widely used infectiousB. burgdorferistrains. When expression ofbosR,rpoS,ospC, anddbpAwas compared between thecsrAmutants and their wild-type counterparts, no detectable differences were observed. Finally, animal studies indicated that thecsrAmutants remained infectious for and virulent in mice. Analyses ofB. burgdorferigene expression in mouse tissues showed comparable levels ofrpoStranscripts by thecsrAmutants and the parental strains. Taken together, these results constitute compelling evidence that CsrA is not involved in activation of the RpoN-RpoS pathway and is dispensable for mammalian infectious processes carried out byB. burgdorferi.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Saivageethi Nuthikattu ◽  
Dragan Milenkovic ◽  
John Rutledge ◽  
Amparo Villablanca

AbstractHyperlipidemia is a risk factor for dementia, and chronic consumption of a Western Diet (WD) is associated with cognitive impairment. However, the molecular mechanisms underlying the development of microvascular disease in the memory centers of the brain are poorly understood. This pilot study investigated the nutrigenomic pathways by which the WD regulates gene expression in hippocampal brain microvessels of female mice. Five-week-old female low-density lipoprotein receptor deficient (LDL-R−/−) and C57BL/6J wild type (WT) mice were fed a chow or WD for 8 weeks. Metabolics for lipids, glucose and insulin were determined. Differential gene expression, gene networks and pathways, transcription factors, and non-protein coding RNAs were evaluated by genome-wide microarray and bioinformatics analysis of laser captured hippocampal microvessels. The WD resulted in differential expression of 2,412 genes. The majority of differential gene expression was attributable to differential regulation of cell signaling proteins and their transcription factors, approximately 7% was attributable to differential expression of miRNAs, and a lesser proportion was due to other non-protein coding RNAs, primarily long non-coding RNAs (lncRNAs) and small nucleolar RNAs (snoRNAs) not previously described to be modified by the WD in females. Our findings revealed that chronic consumption of the WD resulted in integrated multilevel molecular regulation of the hippocampal microvasculature of female mice and may provide one of the mechanisms underlying vascular dementia.


2019 ◽  
Vol 20 (2) ◽  
pp. 290 ◽  
Author(s):  
Anna Pawlik ◽  
Andrzej Mazur ◽  
Jerzy Wielbo ◽  
Piotr Koper ◽  
Kamil Żebracki ◽  
...  

To elucidate the light-dependent gene expression in Cerrena unicolor FCL139, the transcriptomes of the fungus growing in white, blue, green, and red lighting conditions and darkness were analysed. Among 10,413 all-unigenes detected in C. unicolor, 7762 were found to be expressed in all tested conditions. Transcripts encoding putative fungal photoreceptors in the C. unicolor transcriptome were identified. The number of transcripts uniquely produced by fungus ranged from 20 during its growth in darkness to 112 in the green lighting conditions. We identified numerous genes whose expression differed substantially between the darkness (control) and each of the light variants tested, with the greatest number of differentially expressed genes (DEGs) (454 up- and 457 down-regulated) observed for the white lighting conditions. The DEGs comprised those involved in primary carbohydrate metabolism, amino acid metabolism, autophagy, nucleotide repair systems, signalling pathways, and carotenoid metabolism as defined using Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The analysis of the expression profile of genes coding for lignocellulose-degrading enzymes suggests that the wood-degradation properties of C. unicolor may be independent of the lighting conditions and may result from the overall stimulation of fungal metabolism by daylight.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Shan Lin ◽  
Zhicheng Zou ◽  
Cuibing Zhou ◽  
Hancheng Zhang ◽  
Zhiming Cai

Caterpillar fungus is a well-known fungal Chinese medicine. To reveal molecular changes during early and late stages of adenosine biosynthesis, transcriptome analysis was performed with the anamorph strain of caterpillar fungus. A total of 2,764 differentially expressed genes (DEGs) were identified (p≤0.05, |log2 Ratio| ≥ 1), of which 1,737 were up-regulated and 1,027 were down-regulated. Gene expression profiling on 4–10 d revealed a distinct shift in expression of the purine metabolism pathway. Differential expression of 17 selected DEGs which involved in purine metabolism (map00230) were validated by qPCR, and the expression trends were consistent with the RNA-Seq results. Subsequently, the predicted adenosine biosynthesis pathway combined with qPCR and gene expression data of RNA-Seq indicated that the increased adenosine accumulation is a result of down-regulation of ndk, ADK, and APRT genes combined with up-regulation of AK gene. This study will be valuable for understanding the molecular mechanisms of the adenosine biosynthesis in caterpillar fungus.


2015 ◽  
Vol 65 (6) ◽  
pp. 444
Author(s):  
Ramesh C. Meena ◽  
Amitabha Chakrabarti

<p>The versatility of the yeast experimental model has aided in innumerable ways in the understanding of fundamental cellular functions and has also contributed towards the elucidation of molecular mechanisms underlying several pathological conditions in humans. Genome-wide expression, functional, localization and interaction studies on the yeast Saccharomyces cerevisiae exposed to various stressors have made profound contributions towards the understanding of stress response pathways. Analysis of gene expression data from S. cerevisiae cells indicate that the expression of a common set of genes is altered upon exposure to all the stress conditions examined. This common response to multiple stressors is known as the Environmental stress response. Knowledge gained from studies on the yeast model has now become helpful in understanding stress response pathways and associated disease conditions in humans. Cross-species microarray experiments and analysis of data with ever improving computational methods has led to a better comparison of gene expression data between diverse organisms that include yeast and humans.</p>


Blood ◽  
2002 ◽  
Vol 99 (2) ◽  
pp. 488-498 ◽  
Author(s):  
In-Kyung Park ◽  
Yaqin He ◽  
Fangming Lin ◽  
Ole D. Laerum ◽  
Qiang Tian ◽  
...  

Abstract Hematopoietic stem cells (HSCs) have self-renewal capacity and multilineage developmental potentials. The molecular mechanisms that control the self-renewal of HSCs are still largely unknown. Here, a systematic approach using bioinformatics and array hybridization techniques to analyze gene expression profiles in HSCs is described. To enrich mRNAs predominantly expressed in uncommitted cell lineages, 54 000 cDNA clones generated from a highly enriched population of HSCs and a mixed population of stem and early multipotent progenitor (MPP) cells were arrayed on nylon membranes (macroarray or high-density array), and subtracted with cDNA probes derived from mature lineage cells including spleen, thymus, and bone marrow. Five thousand cDNA clones with very low hybridization signals were selected for sequencing and further analysis using microarrays on glass slides. Two populations of cells, HSCs and MPP cells, were compared for differential gene expression using microarray analysis. HSCs have the ability to self-renew, while MPP cells have lost the capacity for self-renewal. A large number of genes that were differentially expressed by enriched populations of HSCs and MPP cells were identified. These included transcription factors, signaling molecules, and previously unknown genes.


Sign in / Sign up

Export Citation Format

Share Document