Pathogenic Potential, Genetic Diversity, and Population Structure of Escherichia coli Strains Isolated from a Forest-Dominated Watershed (Comox Lake) in British Columbia, Canada
ABSTRACTEscherichia coliisolates (n= 658) obtained from drinking water intakes of Comox Lake (2011 to 2013) were screened for the following virulence genes (VGs):stx1andstx2(Shiga toxin-producingE. coli[STEC]),eaeand the adherence factor (EAF) gene (enteropathogenicE. coli[EPEC]), heat-stable (ST) enterotoxin (variants STh and STp) and heat-labile enterotoxin (LT) genes (enterotoxigenicE. coli[ETEC]), andipaH(enteroinvasiveE. coli[EIEC]). The only genes detected wereeaeandstx2, which were carried by 37.69% (n= 248) of the isolates. Onlyeaewas harbored by 26.74% (n= 176) of the isolates, representing potential atypical EPEC strains, while onlystx2was detected in 10.33% (n= 68) of the isolates, indicating potential STEC strains. Moreover, four isolates were positive for both thestx2andeaegenes, representing potential EHEC strains. The prevalence of VGs (eaeorstx2) was significantly (P< 0.0001) higher in the fall season, and multiple genes (eaeplusstx2) were detected only in fall. Repetitive element palindromic PCR (rep-PCR) fingerprint analysis of 658E. coliisolates identified 335 unique fingerprints, with an overall Shannon diversity (H′) index of 3.653. Diversity varied among seasons over the years, with relatively higher diversity during fall. Multivariate analysis of variance (MANOVA) revealed that the majority of the fingerprints showed a tendency to cluster according to year, season, and month. Taken together, the results indicated that the diversity and population structure ofE. colifluctuate on a temporal scale, reflecting the presence of diverse host sources and their behavior over time in the watershed. Furthermore, the occurrence of potentially pathogenicE. colistrains in the drinking water intakes highlights the risk to human health associated with direct and indirect consumption of untreated surface water.