Quantitative and Physiological Analyses of Chloride Dependence of Growth of Halobacillus halophilus

1998 ◽  
Vol 64 (10) ◽  
pp. 3813-3817 ◽  
Author(s):  
Markus Roeßler ◽  
Volker Müller

ABSTRACT A quantitative analysis of the Cl− dependence of growth of Halobacillus halophilus was performed. Optimal growth rates were obtained at Cl− concentrations of between 0.5 and 2.0 M, and the final yield was also strictly dependent on the Cl− concentration. Br− but not I−, SO4 2−, NO2 −, SO2 −, OCN−, SCN−, BO2 −, or BrO3 − could substitute for Cl−. To analyze the function of chloride, chloride concentration was determined. At low external Cl− (Cle −) concentrations, the growth rate was low and Cl− was excluded from the cytoplasm; increasing the Cle −concentration led to an increase in the growth rate and an energy-dependent uptake of Cl−, thus decreasing the Cle −/internal Cli − gradient from ≥10 at 0.1 M Cle − to a nearly constant value of 2 at Cle − concentrations which allowed optimal growth. Two membrane proteins with apparent molecular masses of 31 and 16 kDa which were identified to be specific for Cl−-grown cultures are possible candidates for a chloride uptake system.

2005 ◽  
Vol 18 (9) ◽  
pp. 906-912 ◽  
Author(s):  
U. Seiffert ◽  
P. Schweizer

The development of fungal pathogens can be quantified easily at the level of spore germination or penetration. However, the exact quantification of hyphal growth rates after initial, successful host invasion is much more difficult. Here, we report on the development of a new pattern recognition software (HyphArea) for automated quantitative analysis of hyphal growth rates of powdery mildew fungi on plant surfaces that usually represent highly irregular and noisy image backgrounds. By using HyphArea, we measured growth rates of colonies of the barley powdery mildew, Blumeria graminis f. sp. hordei, on susceptible and induced-resistant host plants. Hyphal growth was not influenced by the resistance state of the plants up to 48 h postinoculation. At later time points, growth rate increased on susceptible plants, whereas it remained restricted on induced-resistant plants. This difference in hyphal growth rate was accompanied by lack of secondary haustoria formation on induced-resistant plants, suggesting that induced resistance in barley against Blumeria graminis is caused mainly by reduced penetration rates of primary as well as secondary appressoria leading, finally, to fewer and lessdeveloped fungal colonies. No evidence was found for reduced nutrient-uptake efficiency of the primary haustoria in induced-resistant leaves, which would be expected to have resulted in reduced hyphal growth rates during the first 48 h of the interaction.


ISRN Agronomy ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Wayne R. Kussow ◽  
Douglas J. Soldat ◽  
William C. Kreuser ◽  
Steven M. Houlihan

Nutrient uptake is strongly influenced by plant growth rate. Accelerated growth leads to nutrient levels incapable of sustaining the optimal growth rate, resulting in shoot to root signaling for increased nutrient absorption. The factors controlling nutrient demand in turfgrass and its consequences have not been investigated. The objectives of this research were to verify that turfgrass exhibits the principal characteristics of demand-driven nutrient uptake and to identify the primary factor controlling nutrient demand via regulation of growth rates. Kentucky bluegrass clipping production increased linearly up to annual fertilizer N rates of 600 kg ha−1 and to 1000 kg N ha−1 for creeping bentgrass. At the typical annual N fertilization rates of 150 to 300 kg ha−1 for the two grasses, N supply was the primary determinant of turfgrass growth rate, plant nutrient demand, and nutrient uptake. Nitrogen uptake accounted for over 88% of uptake of all other nutrients. Uptake of P and K were strongly related to tissue N content irrespective of soil test levels. Variations in turfgrass species and cultivar nutrient requirements and nutrient use efficiencies were found to be directly related to differences in growth rates and, by inference, to differences in nutrient demand.


2007 ◽  
Vol 64 (5) ◽  
pp. 768-776 ◽  
Author(s):  
Akinori Takasuka ◽  
Yoshioki Oozeki ◽  
Ichiro Aoki

The out-of-phase population oscillations between anchovy and sardine have been attributed to climate changes. However, the biological processes causing these species alternations have remained unresolved. Here we propose a simple "optimal growth temperature" hypothesis, in which anchovy and sardine regime shifts are caused by differential optimal temperatures for growth rates during the early life stages. Dome-shaped relationships between growth rate and sea temperature were detected for both Japanese anchovy (Engraulis japonicus) and Japanese sardine (Sardinops melanostictus) larvae based on otolith microstructure analysis. The optimal growth rate for anchovy larvae occurred at 22.0 °C, whereas that for sardine larvae occurred at 16.2 °C. Ambient temperatures have historically fluctuated between these optima, which could lead to contrasting fluctuations in larval growth rates between the two species. This simple mechanism could potentially cause the shifts between the warm anchovy regime and the cool sardine regime in the western North Pacific. Although retrospective analysis suggested synergistic effects of other factors (e.g., trophic interactions and fishing), the optimal growth temperature concept would provide a possible biological mechanism of anchovy and sardine regime shifts.


1990 ◽  
Vol 55 (7) ◽  
pp. 1691-1707 ◽  
Author(s):  
Miloslav Karel ◽  
Jiří Hostomský ◽  
Jaroslav Nývlt ◽  
Axel König

Crystal growth rates of copper sulphate pentahydrate (CuSO4.5 H2O) determined by different authors and methods are compared. The methods included in this comparison are: (i) Measurement on a fixed crystal suspended in a streaming solution, (ii) measurement on a rotating disc, (iii) measurement in a fluidized bed, (iv) measurement in an agitated suspension. The comparison involves critical estimation of the supersaturation used in measurements, of shape factors used for data treatment and a correction for the effect of temperature. Conclusions are drawn for the choice of values to be specified when data of crystal growth rate measurements are published.


1989 ◽  
Vol 54 (11) ◽  
pp. 2951-2961 ◽  
Author(s):  
Miloslav Karel ◽  
Jaroslav Nývlt

Measured growth and dissolution rates of single crystals and tablets were used to calculate the overall linear rates of growth and dissolution of CuSO4.5 H2O crystals. The growth rate for the tablet is by 20% higher than that calculated for the single crystal. It has been concluded that this difference is due to a preferred orientation of crystal faces on the tablet surface. Calculated diffusion coefficients and thicknesses of the diffusion and hydrodynamic layers in the vicinity of the growing or dissolving crystal are in good agreement with published values.


2021 ◽  
pp. 0272989X2110222
Author(s):  
Yuwen Gu ◽  
Elise DeDoncker ◽  
Richard VanEnk ◽  
Rajib Paul ◽  
Susan Peters ◽  
...  

It is long perceived that the more data collection, the more knowledge emerges about the real disease progression. During emergencies like the H1N1 and the severe acute respiratory syndrome coronavirus 2 pandemics, public health surveillance requested increased testing to address the exacerbated demand. However, it is currently unknown how accurately surveillance portrays disease progression through incidence and confirmed case trends. State surveillance, unlike commercial testing, can process specimens based on the upcoming demand (e.g., with testing restrictions). Hence, proper assessment of accuracy may lead to improvements for a robust infrastructure. Using the H1N1 pandemic experience, we developed a simulation that models the true unobserved influenza incidence trend in the State of Michigan, as well as trends observed at different data collection points of the surveillance system. We calculated the growth rate, or speed at which each trend increases during the pandemic growth phase, and we performed statistical experiments to assess the biases (or differences) between growth rates of unobserved and observed trends. We highlight the following results: 1) emergency-driven high-risk perception increases reporting, which leads to reduction of biases in the growth rates; 2) the best predicted growth rates are those estimated from the trend of specimens submitted to the surveillance point that receives reports from a variety of health care providers; and 3) under several criteria to queue specimens for viral subtyping with limited capacity, the best-performing criterion was to queue first-come, first-serve restricted to specimens with higher hospitalization risk. Under this criterion, the lab released capacity to subtype specimens for each day in the trend, which reduced the growth rate bias the most compared to other queuing criteria. Future research should investigate additional restrictions to the queue.


Geosciences ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 187
Author(s):  
Rolf Vieten ◽  
Francisco Hernandez

Speleothems are one of the few archives which allow us to reconstruct the terrestrial paleoclimate and help us to understand the important climate dynamics in inhabited regions of our planet. Their time of growth can be precisely dated by radiometric techniques, but unfortunately seasonal radiometric dating resolution is so far not feasible. Numerous cave environmental monitoring studies show evidence for significant seasonal variations in parameters influencing carbonate deposition (calcium-ion concentration, cave air pCO2, drip rate and temperature). Variations in speleothem deposition rates need to be known in order to correctly decipher the climate signal stored in the speleothem archive. StalGrowth is the first software to quantify growth rates based on cave monitoring results, detect growth seasonality and estimate the seasonal growth bias. It quickly plots the predicted speleothem growth rate together with the influencing cave environmental parameters to identify which parameter(s) cause changes in speleothem growth rate, and it can also identify periods of no growth. This new program has been applied to multiannual cave monitoring studies in Austria, Gibraltar, Puerto Rico and Texas, and it has identified two cases of seasonal varying speleothem growth.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 86-86
Author(s):  
F P Y Tan ◽  
L F Wang ◽  
E Beltranena ◽  
R T Zijlstra

Abstract Beneficial effects of SCFA in modulating gut health stimulated interest on dietary strategies to increase intestinal microbial activity and digesta SCFA. Amylose has lower apparent ileal digestibility (AID) than amylopectin. In the large intestine, undigested starch is fermented by microbes producing SCFA. The objective was to determine effects of increasing dietary amylose on starch flow and metabolite profile along the intestinal tract in weaned pigs. Weaned pigs (n=32; initial BW, 8.4 kg) were randomly allocated to 4 diets containing 67% starch with 0, 20, 35, or 70% amylose in a randomized complete block design. On day 21, pigs were euthanized to collect digesta and feces for evaluating starch digestion and metabolite profiles. Apparent hindgut fermentation (AHF) was calculated as apparent total tract digestibility minus AID. Feed intake was 12% lower (P < 0.05) and growth rate was 18% lower (P < 0.05) for pigs fed 70% amylose than pigs fed 0, 20, or 35% amylose. Feed efficiency was greatest (P < 0.05) for pigs fed with 35% amylose. The AID of starch was 44% lower (P < 0.05) in pigs fed 70% amylose. Starch was completely digested by the proximal colon in pigs fed 0, 20, or 35% amylose, but AHF of starch was 14% greater (P < 0.05) in pigs fed 70% amylose. Increasing dietary amylose did not alter digesta SCFA in the small intestine, but increased (P < 0.05) digesta SCFA in the cecum, specifically acetate and total SCFA, and increased (P < 0.05) propionate and valerate in all sections of the colon. In conclusion, increasing dietary amylose in weaned pigs stimulated hindgut fermentation of starch with a corresponding increase in digesta total SCFA in the cecum and colon. Optimizing dietary amylose may exert its effect as dietary prebiotic while promoting an optimal growth rate in young pigs.


Plants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 31 ◽  
Author(s):  
Maria N. Metsoviti ◽  
George Papapolymerou ◽  
Ioannis T. Karapanagiotidis ◽  
Nikolaos Katsoulas

In this research, the effect of solar irradiance on Chlorella vulgaris cultivated in open bioreactors under greenhouse conditions was investigated, as well as of ratio of light intensity in the 420–520 nm range to light in the 580–680 nm range (I420–520/I580–680) and of artificial irradiation provided by red and white LED lamps in a closed flat plate laboratory bioreactor on the growth rate and composition. The increase in solar irradiance led to faster growth rates (μexp) of C. vulgaris under both environmental conditions studied in the greenhouse (in June up to 0.33 d−1 and in September up to 0.29 d−1) and higher lipid content in microalgal biomass (in June up to 25.6% and in September up to 24.7%). In the experiments conducted in the closed bioreactor, as the ratio I420–520/I580–680 increased, the specific growth rate and the biomass, protein and lipid productivities increased as well. Additionally, the increase in light intensity with red and white LED lamps resulted in faster growth rates (the μexp increased up to 0.36 d−1) and higher lipid content (up to 22.2%), while the protein, fiber, ash and moisture content remained relatively constant. Overall, the trend in biomass, lipid, and protein productivities as a function of light intensity was similar in the two systems (greenhouse and bioreactor).


Sign in / Sign up

Export Citation Format

Share Document