scholarly journals Fungal Colonization and Biodeterioration of Plasticized Polyvinyl Chloride

2000 ◽  
Vol 66 (8) ◽  
pp. 3194-3200 ◽  
Author(s):  
Jeremy S. Webb ◽  
Marianne Nixon ◽  
Ian M. Eastwood ◽  
Malcolm Greenhalgh ◽  
Geoffrey D. Robson ◽  
...  

ABSTRACT Significant substratum damage can occur when plasticized PVC (pPVC) is colonized by microorganisms. We investigated microbial colonization of pPVC in an in situ, longitudinal study. Pieces of pPVC containing the plasticizers dioctyl phthalate and dioctyl adipate (DOA) were exposed to the atmosphere for up to 2 years. Fungal and bacterial populations were quantified, and colonizing fungi were identified by rRNA gene sequencing and morphological characteristics.Aureobasidium pullulans was the principal colonizing fungus, establishing itself on the pPVC between 25 and 40 weeks of exposure. A group of yeasts and yeast-like fungi, includingRhodotorula aurantiaca and Kluyveromyces spp., established themselves on the pPVC much later (after 80 weeks of exposure). Numerically, these organisms dominated A. pullulans after 95 weeks, with a mean viable count ± standard error of 1,000 ± 200 yeast CFU cm−2, compared to 390 ± 50 A. pullulans CFU cm−2. No bacterial colonization was observed. We also used in vitro tests to characterize the deteriogenic properties of fungi isolated from the pPVC. All strains of A. pullulans tested could grow with the intact pPVC formulation as the sole source of carbon, degrade the plasticizer DOA, produce extracellular esterase, and cause weight loss of the substratum during growth in vitro. In contrast, several yeast isolates could not grow on pPVC or degrade DOA. These results suggest that microbial succession may occur during the colonization of pPVC and that A. pullulans is critical to the establishment of a microbial community on pPVC.

2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Maciej Dobrzynski ◽  
Magdalena Pajaczkowska ◽  
Joanna Nowicka ◽  
Aleksander Jaworski ◽  
Piotr Kosior ◽  
...  

In the article has been presented an analysis of susceptibility of selected dental materials, made in the CAD/CAM technology. The morphology and structural properties of selected dental materials and their composites were determined by using XRPD (X-ray powder diffraction) techniques, as well as the IR (infrared) spectroscopy. Moreover, an adhesion as well as development of biofilm by oral microorganisms has been studied. It has been shown that a degree of the biofilm development on the tested dental materials depended on microorganism genus and species. Streptococcus mutans has demonstrated the best adhesion to the tested materials in comparison with Candida albicans and Lactobacillus rhamnosus. However, the sintered materials such as IPS e.max® and the polished IPS e.max® have showed the best “anti-adhesive properties” in relation to S. mutans and L. rhamnosus that have not formed the biofilm on the polished IPS e.max® sample. Furthermore, S. mutans have not formed the biofilm on both surfaces. On the contrary to S. mutans and L. rhamnosus, C. albicans has demonstrated the adhesive properties in relation to the above-mentioned surfaces. Moreover, in contrast to S. mutans and C. albicans, L. rhamnosus has not formed the biofilm on the polished IPS Empress material.


2020 ◽  
Vol 8 (9) ◽  
pp. 1379 ◽  
Author(s):  
Marc-Kevin Zinn ◽  
Laura Schages ◽  
Dirk Bockmühl

Toothbrushes play a central role in oral hygiene and must be considered one of the most common articles of daily use. We analysed the bacterial colonization of used toothbrushes by next generation sequencing (NGS) and by cultivation on different media. Furthermore, we determined the occurrence of antibiotic resistance genes (ARGs) and the impact of different bristle materials on microbial growth and survival. NGS data revealed that Enterobacteriaceae, Micrococcaceae, Actinomycetaceae, and Streptococcaceae comprise major parts of the toothbrush microbiome. The composition of the microbiome differed depending on the period of use or user age. While higher fractions of Actinomycetales, Lactobacillales, and Enterobacterales were found after shorter periods, Micrococcales dominated on both toothbrushes used for more than four weeks and on toothbrushes of older users, while in-vitro tests revealed increasing counts of Micrococcus on all bristle materials as well. Compared to other environments, we found a rather low frequency of ARGs. We determined bacterial counts between 1.42 × 106 and 1.19 × 107 cfu/toothbrush on used toothbrushes and no significant effect of different bristles materials on bacterial survival or growth. Our study illustrates that toothbrushes harbor various microorganisms and that both period of use and user age might affect the microbial composition.


2019 ◽  
Author(s):  
Xiaojing Wei ◽  
Yan Zhang ◽  
Hong Zhou ◽  
Fengwei Tian ◽  
Yongqing Ni

Abstract Background There are still a large variety of microorganisms among aquatic animals, especially probiotic lactic acid bacteria in cold water fishes at high latitudes have not been fully developed. Hence, the present study aims to evaluate the probiotic potential of cold-adapted Lactobacillus strains isolated from the intestinal tract of cold water fishes (Xinjiang) and select candidates to be used as new food preservative agents and/or probiotic additives in feeding of aquaculture. Results A total of 43 Lactobacillus spp. were isolated from 16 kinds of intestinal tract of cold-water fishes. They were characterized by phenotypic methods, identified using Rep-PCR and 16S rRNA gene sequencing as four species: Lactobacillus sakei (22 isolates), Lactobacillus plantarum (16 isolates), Lactobacillus casei (4 isolates) and Lactobacillus paracasei (1 isolate). The in vitro tests included survival in low pH and bile, antimicrobial activity (against Escherichia coli , Salmonella enterica subsp. enterica serovar Typhimurium , Salmonella enterica subsp. enterica , Listeria monocytogenes , and Listeria innocua ), resistance to 15 antibiotics and hemolytic tests. Among all 43 lactobacilli isolates, the 22 isolates showed a wide range of antimicrobial activity against 6 different pathogenic strains. There were twenty isolates growing at a optimal temperature ranging 16~20°C, which were initially considered to be cold-adapted strains. Two (2) Lb. sakei strains and 2 Lb. plantarum strains demonstrated the highest survivability after 4 h of exposure at pH 2.0. Most of the tested strains cannot be cultured after exposed into 0.5% bile solution for 4 h, while 2 Lb. plantarum strains (E-HLM-3, CQ-CGC-2) and 1 Lb. sakei strain M-DGM-2 survived even at 2% bile concentration. In addition, the safety assessment showed that 22 strains without any detectable hemolytic activity and resistant to glycopeptides (vancomycin, teicoplanin), levofloxacin, aztreonam, amikacin and oxacillin, while all the studied lactobacilli showed sensitivity to or semi-tolerant to other antibiotics. Conclusions Based on all the experiments, 3 strains, including E-HLM-3, CQ-CGC-2, and M-DGM-2 might be a candidate of choice for using in the food preservative agents and/or probiotic additives in feeding of aquaculture.


2019 ◽  
Vol 20 (4) ◽  
pp. 923 ◽  
Author(s):  
Khawla Alwahshi ◽  
Esam Saeed ◽  
Arjun Sham ◽  
Aisha Alblooshi ◽  
Marwa Alblooshi ◽  
...  

Date palm orchards suffer from serious diseases, including sudden decline syndrome (SDS). External symptoms were characterized by whitening on one side of the rachis, progressing from the base to the apex of the leaf until the whole leaf dies; while the internal disease symptoms included reddish roots and highly colored vascular bundles causing wilting and death of the tree. Although three Fusarium spp. (F. oxysporum, F. proliferatum and F. solani) were isolated from diseased root samples, the fungal pathogen F. solani was associated with SDS on date palm in the United Arab Emirates (UAE). Fusarium spp. were identified based on their cultural and morphological characteristics. The internal transcribed spacer regions and large subunit of the ribosomal RNA (ITS/LSU rRNA) gene complex of the pathogens was further sequenced. Pathogenicity assays and disease severity indices confirm the main causal agent of SDS on date palm in the UAE is F. solani. Application of Cidely® Top (difenoconazole and cyflufenamid) significantly inhibited the fungal mycelial growth in vitro and reduced SDS development on date palm seedlings pre-inoculated with F. solani under greenhouse conditions. This is the first report confirming that the chemical fungicide Cidely® Top is strongly effective against SDS on date palm.


2019 ◽  
Author(s):  
Xiaojing Wei ◽  
Yan Zhang ◽  
Hong Zhou ◽  
Fengwei Tian ◽  
Yongqing Ni

Abstract Background There are still a large variety of microorganisms among aquatic animals, especially probiotic lactic acid bacteria in cold water fishes at high latitudes have not been fully developed. Hence, the present study aims to evaluate the probiotic potential of cold-adapted Lactobacillus strains isolated from the intestinal tract of cold water fishes (Xinjiang) and select candidates to be used as new food preservative agents and/or probiotic additives in feeding of aquaculture. Results A total of 43 Lactobacillus spp. were isolated from 16 kinds of intestinal tract of cold-water fishes. They were characterized by phenotypic methods, identified using rep-PCR and 16S rRNA gene sequencing as four species: Lactobacillus sakei (22 isolates), Lactobacillus plantarum (16 isolates), Lactobacillus casei (4 isolates) and Lactobacillus paracasei (1 isolate). The in vitro tests included survival in low pH and bile, antimicrobial activity (against Escherichia coli, Salmonella enterica subsp. enterica serovar Typhimurium, Salmonella enterica subsp. enterica, Listeria monocytogenes, and Listeria innocua), resistance to 15 antibiotics and hemolytic tests. Among all 43 lactobacilli iaolates, the 22 isolates showed a wide range of antimicrobial activity against 6 different pathogenic strains. There were twenty isolates growing at a optimal temperature ranging 16~20°C, which were initially considered to be cold-adapted strains. Two (2) Lb. sakei strains and 2 Lb. plantarum strains demonstrated the highest survivability after 4 h of exposure at pH 2.0. Most of the tested strains cannot be cultrued after exposed into 0.5% bile solution for 4 h, while 2 Lb. plantarum strains (E-HLM-3, CQ-CGC-2) and 1 Lb. sakei strain M-DGM-2 survived even at 2% bile concentration. In addition, the safety assessment showed that 22 strains without any detectable hemolytic activity and resistant to glycopeptides (vancomycin, teicoplanin), levofloxacin, aztreonam, amikacin and oxacillin, while all the studied lactobacilli showed sensitivity to or semi-tolerant to other antibiotics. Conclusions In conclusion, based on all the experiments, 3 strains, including E-HLM-3, CQ-CGC-2, and M-DGM-2 might be a candidate of choice for using in the food preservative agents and/or probiotic additives in feeding of aquaculture.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Xiaojing Wei ◽  
Yan Zhang ◽  
Hong Zhou ◽  
Fengwei Tian ◽  
Yongqing Ni

Abstract Background There are still a large variety of microorganisms among aquatic animals, especially probiotic lactic acid bacteria in cold water fishes at high latitudes have not been fully developed. Hence, the present study aims to evaluate the probiotic potential of cold-adapted Lactobacillus strains isolated from the intestinal tract of cold water fishes (Xinjiang) and select candidates to be used as new food preservative agents and/or probiotic additives in feeding of aquaculture. Results A total of 43 Lactobacillus spp. were isolated from 16 kinds of intestinal tract of cold-water fishes. They were characterized by phenotypic methods, identified using Rep-PCR and 16S rRNA gene sequencing as four species: Lactobacillus sakei (22 isolates), Lactobacillus plantarum (16 isolates), Lactobacillus casei (4 isolates) and Lactobacillus paracasei (1 isolate). The in vitro tests included survival in low pH and bile, antimicrobial activity (against Escherichia coli, Salmonella enterica subsp. enterica serovar Typhimurium, Salmonella enterica subsp. enterica, Listeria monocytogenes, and Listeria innocua), resistance to 15 antibiotics and hemolytic tests. Among all 43 lactobacilli isolates, the 22 isolates showed a wide range of antimicrobial activity against 6 different pathogenic strains. There were twenty isolates growing at optimal temperature ranging 16~20 °C, which were initially considered to be cold-adapted strains. Two (2) Lb. sakei strains and 2 Lb. plantarum strains demonstrated the highest survivability after 4 h of exposure at pH 2.0. Most of the tested strains cannot be cultured after exposed into 0.5% bile solution for 4 h, while 2 Lb. plantarum strains (E-HLM-3, CQ-CGC-2) and 1 Lb. sakei strain M-DGM-2 survived even at 2% bile concentration. In addition, the safety assessment showed that 22 strains without any detectable hemolytic activity and resistant to glycopeptides (vancomycin, teicoplanin), levofloxacin, aztreonam, amikacin and oxacillin, while all the studied lactobacilli showed sensitivity to or semi-tolerant to other antibiotics. Conclusions Based on all the experiments, 3 strains, including E-HLM-3, CQ-CGC-2, and M-DGM-2 might be a candidate of choice for using in the food preservative agents and/or probiotic additives in feeding of aquaculture.


2018 ◽  
Vol 64 (12) ◽  
pp. 1743-1752 ◽  
Author(s):  
Yingyu Liu ◽  
Karen Ka-Wing Wong ◽  
Elaine Yee-Ling Ko ◽  
Xiaoyan Chen ◽  
Jin Huang ◽  
...  

Abstract BACKGROUND A recent study has reported that the microbiota in endometrial fluid of patients receiving in vitro fertilization and embryo transfer (IVF-ET) may predict implantation and pregnancy rates. However, studies are lacking that simultaneously compare the microbiota between endometrial fluid and tissue samples. Whether the microbiota composition in endometrial fluid reflects that in the endometrial tissue remains unclear. METHODS We systematically profiled the microbiota in endometrial fluid and tissue samples of IVF-ET patients using massively parallel sequencing. The bacterial 16S ribosomal RNA gene (V4 region) was PCR-amplified. Sequencing reads with >98% nucleotide identity were clustered as a bacterial taxon. To account for the different number of reads per sample, we normalized the read counts of each taxon before comparing its relative abundances across samples. RESULTS Thirteen taxa, including Verrucomicrobiaceae, Brevundimonas, Achromobacter, Exiguobacterium, and Flavobacterium, were consistently detected only in endometrial tissue samples but not fluid samples. Eight taxa were detected in fluid but not tissue. Twenty-two taxa were differentially abundant between fluid and tissue samples (adjusted P values, 4.1 × 10−25 to 0.025). The numbers of taxa identified per 1000 sequencing reads, diversity, and evenness in fluid samples were smaller than those in tissue samples. CONCLUSIONS Our data suggest that the microbiota composition in endometrial fluid does not fully reflect that in endometrial tissue. Sampling from both endometrial fluid and biopsy allows a more comprehensive view of microbial colonization. Further efforts are needed to identify the preanalytical effects, including sampling sites, methods, and sequencing depth, on profiling endometrial microbiota.


Parasitology ◽  
2009 ◽  
Vol 136 (7) ◽  
pp. 783-792 ◽  
Author(s):  
J. M. AUSTEN ◽  
R. JEFFERIES ◽  
J. A. FRIEND ◽  
U. RYAN ◽  
P. ADAMS ◽  
...  

SUMMARYLittle is known of the prevalence and life-cycle of trypanosomes in mammals native to Australia. Native Australian trypanosomes have previously been identified in marsupials in the eastern states of Australia, with one recent report in brush-tailed bettongs (Bettongia penicillata), or woylie in Western Australia in 2008. This study reports a novel Trypanosoma sp. identified in blood smears, from 7 critically endangered Gilbert's potoroos (Potorous gilbertii) and 3 quokkas (Setonix brachyurus) in Western Australia. Trypanosomes were successfully cultured in vitro and showed morphological characteristics similar to members of the subgenus Herpetosoma. Phylogenetic analysis of 18S rRNA gene sequences identified 2 different novel genotypes A and B that are closely related to trypanosomes previously isolated from a common wombat (Vombatus ursinus) in Victoria, Australia. The new species is proposed to be named Trypanosoma copemani n. sp.


2019 ◽  
Vol 84 (4) ◽  
pp. 365-376
Author(s):  
Gordana Zavisic ◽  
Sasa Petricevic ◽  
Slavica Ristic ◽  
Milena Rikalovic ◽  
Natasa Jovanovic-Ljeskovic ◽  
...  

The present study was dedicated to determining probiotic potential of a human isolate G-4, originated from meconium. The isolate was identified using morphological, physiological and biochemical assays and molecular method based on 16S rRNA gene sequencing. In order to evaluate its probiotic properties in vitro tests were performed: the survival in simulated gastrointestinal conditions, adhesion to hexadecane, and antimicrobial activity. Safety aspects of the isolate were examined by testing toxicity, gastrointestinal tolerance and bacterial translocation in vivo, as well as hemolytic activity in vitro. The isolate G-4, identified as Lactobacillus fermentum, showed viability in artificial gastric and intestinal juice (low degree of cell viability reduction for 0.69 and 1.30 logCFU mL-1 units, respectively), moderate adhesion to hexadecane (39?2.1 %), and antimicrobial activity against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica subsp. enterica serotype Abony and Clostridium sporogenes, due to production of lactic acid (9.80 g L-1). No signs of toxicity, bacterial translocation, hemolytic activity, were observed.


2011 ◽  
Vol 81 (1) ◽  
pp. 34-42 ◽  
Author(s):  
Joel Deneau ◽  
Taufeeq Ahmed ◽  
Roger Blotsky ◽  
Krzysztof Bojanowski

Type II diabetes is a metabolic disease mediated through multiple molecular pathways. Here, we report anti-diabetic effect of a standardized isolate from a fossil material - a mineraloid leonardite - in in vitro tests and in genetically diabetic mice. The mineraloid isolate stimulated mitochondrial metabolism in human fibroblasts and this stimulation correlated with enhanced expression of genes coding for mitochondrial proteins such as ATP synthases and ribosomal protein precursors, as measured by DNA microarrays. In the diabetic animal model, consumption of the Totala isolate resulted in decreased weight gain, blood glucose, and glycated hemoglobin. To our best knowledge, this is the first description ever of a fossil material having anti-diabetic activity in pre-clinical models.


Sign in / Sign up

Export Citation Format

Share Document