scholarly journals Staphylococcus aureus Tet38 Efflux Pump Structural Modeling and Roles of Essential Residues in Drug Efflux and Host Cell Internalization

2021 ◽  
Vol 89 (5) ◽  
Author(s):  
Q. C. Truong-Bolduc ◽  
Y. Wang ◽  
D. C. Hooper

ABSTRACT The Staphylococcus aureus Tet38 membrane protein has distinct functions, including drug efflux and host cell attachment and internalization mediated by interaction with host cell CD36. Using structural modeling and site-directed mutagenesis, we identified key amino acids involved in different functions. Tet38, a member of the major facilitator superfamily, is predicted to have 14 transmembrane segments (TMS), 6 cytoplasmic loops, and 7 external loops. Cysteine substitutions of arginine 106 situated at the junction of TMS 4 and external loop L2, and glycine 151 of motif C on TMS 5, resulted in complete or near-complete (8- to 16-fold) reductions in Tet38-mediated resistance to tetracycline, with minimal to no effect on A549 host cell internalization. In contrast, a three-amino-acid deletion, F411P412G413, in external loop L7 situated between TMS 13 and 14 led to a decrease of 4-fold in S. aureus internalization by A549 cells and a partial effect on tetracycline resistance (4-fold reduction). A three-amino-acid deletion, D38D39L40, in external loop L1 situated between TMS-1 and TMS-2, had a similar partial effect on tetracycline resistance but did not affect cell internalization. Using an Ni column retention assay, we showed further that the L7, but not the L1, deletion impaired binding to CD36. Thus, the L7 domain of Tet38 is key for interaction with CD36 and host cell internalization, and amino acids R106 and G151 (TMSs 4 and 5) are particularly important for tetracycline resistance without affecting internalization.

2016 ◽  
Vol 84 (6) ◽  
pp. 1672-1681 ◽  
Author(s):  
Patrick Ebner ◽  
Janina Rinker ◽  
Minh Thu Nguyen ◽  
Peter Popella ◽  
Mulugeta Nega ◽  
...  

Excretion of cytoplasmic proteins in pro- and eukaryotes, also referred to as “nonclassical protein export,” is a well-known phenomenon. However, comparatively little is known about the role of the excreted proteins in relation to pathogenicity. Here, the impact of two excreted glycolytic enzymes, aldolase (FbaA) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), on pathogenicity was investigated inStaphylococcus aureus. Both enzymes bound to certain host matrix proteins and enhanced adherence of the bacterial cells to host cells but caused a decrease in host cell invasion. FbaA and GAPDH also bound to the cell surfaces of staphylococcal cells by interaction with the major autolysin, Atl, that is involved in host cell internalization. Surprisingly, FbaA showed high cytotoxicity to both MonoMac 6 (MM6) and HaCaT cells, while GAPDH was cytotoxic only for MM6 cells. Finally, the contribution of external FbaA and GAPDH toS. aureuspathogenicity was confirmed in an insect infection model.


2018 ◽  
Vol 200 (19) ◽  
Author(s):  
Zachary DeMars ◽  
Jeffrey L. Bose

ABSTRACTStaphylococcus aureusis capable of phosphorylating exogenous fatty acids for incorporation into the bacterium's membrane via the fatty acid kinase, FakA. Additionally, FakA plays a significant role in virulence factor regulation and skin infections. We previously showed that afakAmutant displays altered growth kineticsin vitro, observed during the late-exponential phase of growth. Here, we demonstrate that the absence of FakA leads to key metabolic changes. First, thefakAmutant has an altered acetate metabolism, with acetate being consumed at an increased rate than in the wild-type strain. Moreover, the growth benefit was diminished with inactivation of the acetate-generating enzyme AckA. Using a mass spectrometry-based approach, we identified altered concentrations of tricarboxylic acid (TCA) cycle intermediates and both intracellular and extracellular amino acids. Together, these data demonstrate a change in carbohydrate carbon utilization and altered amino acid metabolism in thefakAmutant. Energy status analysis revealed the mutant had a similar ADP/ATP ratio to that of the wild type, but a reduced adenylate energy charge. The inactivation offakAchanged the NAD+/NADH and NADP+/NADPH ratios, indicating a more oxidized cellular environment. Evidence points to the global metabolic regulatory proteins CcpA and CodY being important contributors to the altered growth in afakAmutant. Indeed, it was found that directing amino acids from the urea cycle into the TCA cycle via glutamate dehydrogenase was an essential component ofS. aureusgrowth after glucose depletion. Together, these data identify a previously unidentified role of FakA in the global physiology ofS. aureus, linking external fatty acid utilization and central metabolism.IMPORTANCEThe fatty acid kinase, FakA, ofStaphylococcus aureusplays several important roles in the cell. FakA is important for the activation of the SaeRS two-component system and secreted virulence factors like α-hemolysin. However, the contribution of FakA to cellular metabolism has not been explored. Here, we highlight the metabolic consequence of removal of FakA from the cell. The absence of FakA leads to altered acetate metabolism and altered redox balance, as well as a change in intracellular amino acids. Additionally, the use of environmental amino acid sources is affected by FakA. Together, these results demonstrate for the first time that FakA provides a link between the pathways for exogenous fatty acid use, virulence factor regulation, and other metabolic processes.


2016 ◽  
Vol 82 (10) ◽  
pp. 3042-3051 ◽  
Author(s):  
Kelsi M. Sandoz ◽  
Paul A. Beare ◽  
Diane C. Cockrell ◽  
Robert A. Heinzen

ABSTRACTHost cell-free (axenic) culture ofCoxiella burnetiiin acidified citrate cysteine medium-2 (ACCM-2) has provided important opportunities for investigating the biology of this naturally obligate intracellular pathogen and enabled the development of tools for genetic manipulation. However, ACCM-2 has complex nutrient sources that preclude a detailed study of nutritional factors required forC. burnetiigrowth. Metabolic reconstruction ofC. burnetiipredicts that the bacterium cannot synthesize all amino acids and therefore must sequester some from the host. To examineC. burnetiiamino acid auxotrophies, we developed a nutritionally defined medium with known amino acid concentrations, termed ACCM-D. Compared to ACCM-2, ACCM-D supported longer logarithmic growth, a more gradual transition to stationary phase, and approximately 5- to 10-fold greater overall replication. Small-cell-variant morphological forms generated in ACCM-D also showed increased viability relative to that generated in ACCM-2. Lack of growth in amino acid-deficient formulations of ACCM-D revealedC. burnetiiauxotrophy for 11 amino acids, including arginine. Heterologous expression ofLegionella pneumophilaargGHinC. burnetiipermitted growth in ACCM-D missing arginine and supplemented with citrulline, thereby providing a nonantibiotic means of selection ofC. burnetiigenetic transformants. Consistent with bioinformatic predictions, the elimination of glucose did not impairC. burnetiireplication. Together, these results highlight the advantages of a nutritionally defined medium in investigations ofC. burnetiimetabolism and the development of genetic tools.IMPORTANCEHost cell-free growth and genetic manipulation ofCoxiella burnetiihave revolutionized research of this intracellular bacterial pathogen. Nonetheless, undefined components of growth medium have made studies ofC. burnetiiphysiology difficult and have precluded the development of selectable markers for genetic transformation based on nutritional deficiencies. Here, we describe a medium, containing only amino acids as the sole source of carbon and energy, which supports robust growth and improved viability ofC. burnetii. Growth studies confirmed thatC. burnetiicannot replicate in medium lacking arginine. However, genetic transformation of the bacterium with constructs containing the last two genes in theL. pneumophilaarginine biosynthesis pathway (argGH) allowed growth on defined medium missing arginine but supplemented with the arginine precursor citrulline. Our results advance the field by facilitating studies ofC. burnetiimetabolism and allowing non-antibiotic-based selection ofC. burnetiigenetic transformants, an important achievement considering that selectable makers based on antibiotic resistance are limited.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Rajdeep Banerjee ◽  
Erin Weisenhorn ◽  
Kevin J. Schwartz ◽  
Kevin S. Myers ◽  
Jeremy D. Glasner ◽  
...  

ABSTRACT Pathogenicity islands and plasmids bear genes for pathogenesis of various Escherichia coli pathotypes. Although there is a basic understanding of the contribution of these virulence factors to disease, less is known about variation in regulatory networks in determining disease phenotypes. Here, we dissected a regulatory network directed by the conserved iron homeostasis regulator, ferric uptake regulator (Fur), in uropathogenic E. coli (UPEC) strain CFT073. Comparing anaerobic genome-scale Fur DNA binding with Fur-dependent transcript expression and protein levels of the uropathogen to that of commensal E. coli K-12 strain MG1655 showed that the Fur regulon of the core genome is conserved but also includes genes within the pathogenicity/genetic islands. Unexpectedly, regulons indicative of amino acid limitation and the general stress response were also indirectly activated in the uropathogen fur mutant, suggesting that induction of the Fur regulon increases amino acid demand. Using RpoS levels as a proxy, addition of amino acids mitigated the stress. In addition, iron chelation increased RpoS to the same levels as in the fur mutant. The increased amino acid demand of the fur mutant or iron chelated cells was exacerbated by aerobic conditions, which could be partly explained by the O2-dependent synthesis of the siderophore aerobactin, encoded by an operon within a pathogenicity island. Taken together, these data suggest that in the iron-poor environment of the urinary tract, amino acid availability could play a role in the proliferation of this uropathogen, particularly if there is sufficient O2 to produce aerobactin. IMPORTANCE Host iron restriction is a common mechanism for limiting the growth of pathogens. We compared the regulatory network controlled by Fur in uropathogenic E. coli (UPEC) to that of nonpathogenic E. coli K-12 to uncover strategies that pathogenic bacteria use to overcome iron limitation. Although iron homeostasis functions were regulated by Fur in the uropathogen as expected, a surprising finding was the activation of the stringent and general stress responses in the uropathogen fur mutant, which was rescued by amino acid addition. This coordinated global response could be important in controlling growth and survival under nutrient-limiting conditions and during transitions from the nutrient-rich environment of the lower gastrointestinal (GI) tract to the more restrictive environment of the urinary tract. The coupling of the response of iron limitation to increased demand for amino acids could be a critical attribute that sets UPEC apart from other E. coli pathotypes.


2019 ◽  
Vol 201 (19) ◽  
Author(s):  
Surashree S. Kulkarni ◽  
Joseph J. Johnston ◽  
Yongtao Zhu ◽  
Zachary T. Hying ◽  
Mark J. McBride

ABSTRACTFlavobacterium johnsoniaeSprB moves rapidly along the cell surface, resulting in gliding motility. SprB secretion requires the type IX secretion system (T9SS). Proteins secreted by the T9SS typically have conserved C-terminal domains (CTDs) belonging to the type A CTD or type B CTD family. Attachment of 70- to 100-amino-acid type A CTDs to a foreign protein allows its secretion. Type B CTDs are common but have received little attention. Secretion of the foreign protein superfolder green fluorescent protein (sfGFP) fused to regions spanning the SprB type B CTD (sfGFP-CTDSprB) was analyzed. CTDs of 218 amino acids or longer resulted in secretion of sfGFP, whereas a 149-amino-acid region did not. Some sfGFP was secreted in soluble form, whereas the rest was attached on the cell surface. Surface-attached sfGFP was rapidly propelled along the cell, suggesting productive interaction with the motility machinery. This did not result in rapid cell movement, which apparently requires additional regions of SprB. Secretion of sfGFP-CTDSprBrequired coexpression withsprF, which lies downstream ofsprB. SprF is similar in sequence toPorphyromonas gingivalisPorP. MostF. johnsoniaegenes encoding proteins with type B CTDs lie immediately upstream ofporP/sprF-like genes. sfGFP was fused to the type B CTD from one such protein (Fjoh_3952). This resulted in secretion of sfGFP only when it was coexpressed with its cognate PorP/SprF-like protein. These results highlight the need for extended regions of type B CTDs and for coexpression with the appropriate PorP/SprF-like protein for efficient secretion and cell surface localization of cargo proteins.IMPORTANCETheF. johnsoniaegliding motility adhesin SprB is delivered to the cell surface by the type IX secretion system (T9SS) and is rapidly propelled along the cell by the motility machinery. How this 6,497-amino-acid protein interacts with the secretion and motility machines is not known. Fusion of the C-terminal 218 amino acids of SprB to a foreign cargo protein resulted in its secretion, attachment to the cell surface, and rapid movement by the motility machinery. Efficient secretion of SprB required coexpression with the outer membrane protein SprF. Secreted proteins that have sequence similarity to SprB in their C-terminal regions are common in the phylumBacteroidetesand may have roles in adhesion, motility, and virulence.


2014 ◽  
Vol 44 (2) ◽  
pp. 134-143
Author(s):  
William Renzo Cortez-Vega ◽  
Irene Rodrigues Freitas ◽  
Sandriane Pizato ◽  
Carlos Prentice

Purpose – The purpose of this study was to isolate Whitemouth croaker protein by alkaline solubilization process and evaluate their nutritional quality to evaluate the bioavailability of essential amino acids. Design/methodology/approach – The proximate composition, essential amino acid composition, in vitro digestibility, apparent bioavailability, chemical score of amino acids and SDS-PAGE were determined for the isolated croaker proteins. Findings – The isolated protein showed a high level of protein 92.21 percent and low amount of lipids 0.57 percent. The protein is rich in lysine and leucine, 108.73 and 96.75 mg/g protein, respectively. The protein isolate had high digestibility, 94.32 percent, which indicates proper utilization of this protein source, while the tryptophan had lower bioavailability (12.58 mg amino acid/mg protein). The high chemical scores were found for the amino acids lysine, methionine+cysteine (6.79 and 5.14). SDS-PAGE of proteins extracted showed appearance of the heavy chain of myosin (220 kDa), actin (50 kDa) and other fractions, with molecular weight between 20 and 50 kDa, such as troponin I, C and T. Originality/value – The products obtained from croaker muscle can be incorporated as a high value supplements in human diets. The isolated protein exhibited a high content of essential amino acids and digestibility, indicating that the protein has a high nutritional quality.


2014 ◽  
Vol 80 (12) ◽  
pp. 3576-3584 ◽  
Author(s):  
Gaoyan Wang ◽  
David C. Manns ◽  
John J. Churey ◽  
Randy W. Worobo

ABSTRACTThurincin H is an antimicrobial peptide produced byBacillus thuringiensisSF361. With a helical back bone, the 31 amino acids of thurincin H form a hairpin structure maintained by four pairs of very unique sulfur-to-α-carbon thioether bonds. The production of thurincin H depends on a putative gene cluster containing 10 open reading frames. The gene cluster includes three tandem structural genes (thnA1,thnA2, andthnA3) encoding three identical 40-amino-acid thurincin H prepeptides and seven other genes putatively responsible for prepeptide processing, regulation, modification, exportation, and self-immunity. A homologous thurincin H expression system was developed by transforming a thurincin H-deficient host with a novel expression vector, pGW133. The host, designatedB. thuringiensisSF361 ΔthnA1ΔthnA2ΔthnA3, was constructed by deletion of the three tandem structural genes from the chromosome of the natural thurincin H producer. The thurincin H expression vector pGW133 was constructed by cloning the thurincin H native promoter,thnA1, and a Cry protein terminator into theEscherichia coli-B. thuringiensisshuttle vector pHT315. Thirty-three different pGW133 variants, each containing a different point mutation in thethnA1gene, were generated and separately transformed intoB. thuringiensisSF361 ΔthnA1ΔthnA2ΔthnA3. Those site-directed mutants contained either a single radical or conservative amino acid substitution on the thioether linkage-forming positions or a radical substitution on all other nonalanine amino acids. The bacteriocin activities ofB. thuringiensisSF361 ΔthnA1ΔthnA2ΔthnA3carrying different pGW133 variants against three different indicator strains were subsequently compared.


2019 ◽  
Vol 64 (1) ◽  
Author(s):  
Sara Ceballos ◽  
Choon Kim ◽  
Yuanyuan Qian ◽  
Shahriar Mobashery ◽  
Mayland Chang ◽  
...  

ABSTRACT The in vitro activities of five quinazolinone antibacterials, compounds Q1 to Q5, were tested against 210 strains of methicillin-resistant Staphylococcus aureus (MRSA). The MIC50/MIC90 values (in μg/ml) were as follows: Q1, 0.5/2; Q2, 1/4; Q3, 2/4; Q4, 0.06/0.25; and Q5, 0.125/0.5. Several strains with high MIC values (from 8 to >32 μg/ml) for some of these compounds exhibited amino acid changes in the penicillin-binding proteins, which are targeted by these antibacterials.


mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. e02250-20
Author(s):  
Kathrin Stelzner ◽  
Ann-Cathrin Winkler ◽  
Chunguang Liang ◽  
Aziza Boyny ◽  
Carsten P. Ade ◽  
...  

ABSTRACTThe opportunistic human pathogen Staphylococcus aureus causes serious infectious diseases that range from superficial skin and soft tissue infections to necrotizing pneumonia and sepsis. While classically regarded as an extracellular pathogen, S. aureus is able to invade and survive within human cells. Host cell exit is associated with cell death, tissue destruction, and the spread of infection. The exact molecular mechanism employed by S. aureus to escape the host cell is still unclear. In this study, we performed a genome-wide small hairpin RNA (shRNA) screen and identified the calcium signaling pathway as being involved in intracellular infection. S. aureus induced a massive cytosolic Ca2+ increase in epithelial host cells after invasion and intracellular replication of the pathogen. This was paralleled by a decrease in endoplasmic reticulum Ca2+ concentration. Additionally, calcium ions from the extracellular space contributed to the cytosolic Ca2+ increase. As a consequence, we observed that the cytoplasmic Ca2+ rise led to an increase in mitochondrial Ca2+ concentration, the activation of calpains and caspases, and eventually to cell lysis of S. aureus-infected cells. Our study therefore suggests that intracellular S. aureus disturbs the host cell Ca2+ homeostasis and induces cytoplasmic Ca2+ overload, which results in both apoptotic and necrotic cell death in parallel or succession.IMPORTANCE Despite being regarded as an extracellular bacterium, the pathogen Staphylococcus aureus can invade and survive within human cells. The intracellular niche is considered a hideout from the host immune system and antibiotic treatment and allows bacterial proliferation. Subsequently, the intracellular bacterium induces host cell death, which may facilitate the spread of infection and tissue destruction. So far, host cell factors exploited by intracellular S. aureus to promote cell death are only poorly characterized. We performed a genome-wide screen and found the calcium signaling pathway to play a role in S. aureus invasion and cytotoxicity. The intracellular bacterium induces a cytoplasmic and mitochondrial Ca2+ overload, which results in host cell death. Thus, this study first showed how an intracellular bacterium perturbs the host cell Ca2+ homeostasis.


2019 ◽  
Vol 85 (15) ◽  
Author(s):  
Marietta John-White ◽  
James Gardiner ◽  
Priscilla Johanesen ◽  
Dena Lyras ◽  
Geoffrey Dumsday

ABSTRACT β-Aminopeptidases have the unique capability to hydrolyze N-terminal β-amino acids, with varied preferences for the nature of β-amino acid side chains. This unique capability makes them useful as biocatalysts for synthesis of β-peptides and to kinetically resolve β-peptides and amides for the production of enantiopure β-amino acids. To date, six β-aminopeptidases have been discovered and functionally characterized, five from Gram-negative bacteria and one from a fungus, Aspergillus. Here we report on the purification and characterization of an additional four β-aminopeptidases, one from a Gram-positive bacterium, Mycolicibacterium smegmatis (BapAMs), one from a yeast, Yarrowia lipolytica (BapAYlip), and two from Gram-negative bacteria isolated from activated sludge identified as Burkholderia spp. (BapABcA5 and BapABcC1). The genes encoding β-aminopeptidases were cloned, expressed in Escherichia coli, and purified. The β-aminopeptidases were produced as inactive preproteins that underwent self-cleavage to form active enzymes comprised of two different subunits. The subunits, designated α and β, appeared to be tightly associated, as the active enzyme was recovered after immobilized-metal affinity chromatography (IMAC) purification, even though only the α-subunit was 6-histidine tagged. The enzymes were shown to hydrolyze chromogenic substrates with the N-terminal l-configurations β-homo-Gly (βhGly) and β3-homo-Leu (β3hLeu) with high activities. These enzymes displayed higher activity with H-βhGly-p-nitroanilide (H-βhGly-pNA) than previously characterized enzymes from other microorganisms. These data indicate that the new β-aminopeptidases are fully functional, adding to the toolbox of enzymes that could be used to produce β-peptides. Overexpression studies in Pseudomonas aeruginosa also showed that the β-aminopeptidases may play a role in some cellular functions. IMPORTANCE β-Aminopeptidases are unique enzymes found in a diverse range of microorganisms that can utilize synthetic β-peptides as a sole carbon source. Six β-aminopeptidases have been previously characterized with preferences for different β-amino acid substrates and have demonstrated the capability to catalyze not only the degradation of synthetic β-peptides but also the synthesis of short β-peptides. Identification of other β-aminopeptidases adds to this toolbox of enzymes with differing β-amino acid substrate preferences and kinetics. These enzymes have the potential to be utilized in the sustainable manufacture of β-amino acid derivatives and β-peptides for use in biomedical and biomaterial applications. This is important, because β-amino acids and β-peptides confer increased proteolytic resistance to bioactive compounds and form novel structures as well as structures similar to α-peptides. The discovery of new enzymes will also provide insight into the biological importance of these enzymes in nature.


Sign in / Sign up

Export Citation Format

Share Document