scholarly journals ZBTB7B (ThPOK) Is Required for Pathogenesis of Cerebral Malaria and Protection against Pulmonary Tuberculosis

2019 ◽  
Vol 88 (2) ◽  
Author(s):  
James M. Kennedy ◽  
Anna Georges ◽  
Angelia V. Bassenden ◽  
Silvia M. Vidal ◽  
Albert M. Berghuis ◽  
...  

ABSTRACT We used a genome-wide screen in N-ethyl-N-nitrosourea (ENU)-mutagenized mice to identify genes in which recessive loss-of-function mutations protect against pathological neuroinflammation. We identified an R367Q mutation in the ZBTB7B (ThPOK) protein in which homozygosity causes protection against experimental cerebral malaria (ECM) caused by infection with Plasmodium berghei ANKA. Zbtb7bR367Q homozygous mice show a defect in the lymphoid compartment expressed as severe reduction in the number of single-positive CD4 T cells in the thymus and in the periphery, reduced brain infiltration of proinflammatory leukocytes in P. berghei ANKA-infected mice, and reduced production of proinflammatory cytokines by primary T cells ex vivo and in vivo. Dampening of proinflammatory immune responses in Zbtb7bR367Q mice is concomitant to increased susceptibility to infection with avirulent (Mycobacterium bovis BCG) and virulent (Mycobacterium tuberculosis H37Rv) mycobacteria. The R367Q mutation maps to the first DNA-binding zinc finger domain of ThPOK and causes loss of base contact by R367 in the major groove of the DNA, which is predicted to impair DNA binding. Global immunoprecipitation of ThPOK-containing chromatin complexes coupled to DNA sequencing (ChIP-seq) identified transcriptional networks and candidate genes likely to play key roles in CD4+ CD8+ T cell development and in the expression of lineage-specific functions of these cells. This study highlights ThPOK as a global regulator of immune function in which alterations may affect normal responses to infectious and inflammatory stimuli.

2015 ◽  
Vol 84 (1) ◽  
pp. 329-338 ◽  
Author(s):  
Anne-Laurence Blanc ◽  
Tarun Keswani ◽  
Olivier Gorgette ◽  
Antonio Bandeira ◽  
Bernard Malissen ◽  
...  

The role of naturally occurring CD4+CD25+Foxp3+regulatory T cells (nTreg) in the pathogenesis of cerebral malaria (CM), which involves both pathogenic T cell responses and parasite sequestration in the brain, is still unclear. To assess the contribution and dynamics of nTreg during the neuropathogenesis, we unbalanced the ratio between nTreg and naive CD4+T cells in an attenuated model ofPlasmodium bergheiANKA-induced experimental CM (ECM) by using a selective cell enrichment strategy. We found that nTreg adoptive transfer accelerated the onset and increased the severity of CM in syngeneic C57BL/6 (B6)P. bergheiANKA-infected mice without affecting the level of parasitemia. In contrast, naive CD4+T cell enrichment prevented CM and promoted parasite clearance. Furthermore, early during the infection nTreg expanded in the spleen but did not efficiently migrate to the site of neuroinflammation, suggesting that nTreg exert their pathogenic action early in the spleen by suppressing the protective naive CD4+T cell response toP. bergheiANKA infectionin vivoin both CM-susceptible (B6) and CM-resistant (B6-CD4−/−) mice. However, their sole transfer was not sufficient to restore CM susceptibility in two CM-resistant congenic strains tested. Altogether, these results demonstrate that nTreg are activated and functional duringP. bergheiANKA infection and that they contribute to the pathogenesis of CM. They further suggest that nTreg may represent an early target for the modulation of the immune response to malaria.


2014 ◽  
Vol 82 (11) ◽  
pp. 4854-4864 ◽  
Author(s):  
Chek Meng Poh ◽  
Shanshan W. Howland ◽  
Gijsbert M. Grotenbreg ◽  
Laurent Rénia

ABSTRACTCD8+T cells play a pathogenic role in the development of murine experimental cerebral malaria (ECM) induced byPlasmodium bergheiANKA (PbA) infection in C57BL/6 mice. Only a limited number of CD8+epitopes have been described. Here, we report the identification of a new epitope from the bergheilysin protein recognized by PbA-specific CD8+T cells. Induction and functionality of these specific CD8+T cells were investigated in parallel with previously reported epitopes, using new tools such as tetramers and reporter cell lines that were developed for this study. We demonstrate that CD8+T cells of diverse specificities induced during PbA infection share many characteristics. They express cytolytic markers (gamma interferon [IFN-γ], granzyme B) and chemokine receptors (CXCR3, CCR5) and damage the blood-brain barrierin vivo. Our earlier finding that brain microvessels in mice infected with PbA, but not with non-ECM-causing strains, cross-presented a shared epitope was generalizable to these additional epitopes. Suppressing the induction of specific CD8+T cells through tolerization with a high-dose peptide injection was unable to confer protection against ECM, suggesting that CD8+T cells of other specificities participate in this process. The tools that we developed can be used to further investigate the heterogeneity of CD8+T cell responses that are involved in ECM.


2014 ◽  
Vol 83 (2) ◽  
pp. 759-768 ◽  
Author(s):  
Sabrina Torre ◽  
Sebastien P. Faucher ◽  
Nassima Fodil ◽  
Silayuv E. Bongfen ◽  
Joanne Berghout ◽  
...  

We identify anN-ethyl-N-nitrosourea (ENU)-induced I23N mutation in the THEMIS protein that causes protection against experimental cerebral malaria (ECM) caused by infection withPlasmodium bergheiANKA.ThemisI23Nhomozygous mice show reduced CD4+and CD8+T lymphocyte numbers. ECM resistance inP. bergheiANKA-infectedThemisI23Nmice is associated with decreased cerebral cellular infiltration, retention of blood-brain barrier integrity, and reduced proinflammatory cytokine production. THEMISI23Nprotein expression is absent from mutant mice, concurrent with the decreased THEMISI23Nstability observedin vitro. Biochemical studiesin vitroand functional complementationin vivoinThemisI23N/+:Lck−/+doubly heterozygous mice demonstrate that functional coupling of THEMIS to LCK tyrosine kinase is required for ECM pathogenesis. Damping of proinflammatory responses inThemisI23Nmice causes susceptibility to pulmonary tuberculosis. Thus, THEMIS is required for the development and ultimately the function of proinflammatory T cells.ThemisI23Nmice can be used to study the newly discovered association ofTHEMIS(6p22.33) with inflammatory bowel disease and multiple sclerosis.


2018 ◽  
Vol 115 (10) ◽  
pp. E2366-E2375 ◽  
Author(s):  
David Langlais ◽  
Regina Cencic ◽  
Neda Moradin ◽  
James M. Kennedy ◽  
Kodjo Ayi ◽  
...  

Cerebral malaria (CM) is a severe and rapidly progressing complication of infection by Plasmodium parasites that is associated with high rates of mortality and morbidity. Treatment options are currently few, and intervention with artemisinin (Art) has limited efficacy, a problem that is compounded by the emergence of resistance to Art in Plasmodium parasites. Rocaglates are a class of natural products derived from plants of the Aglaia genus that have been shown to interfere with eukaryotic initiation factor 4A (eIF4A), ultimately blocking initiation of protein synthesis. Here, we show that the rocaglate CR-1-31B perturbs association of Plasmodium falciparum eIF4A (PfeIF4A) with RNA. CR-1-31B shows potent prophylactic and therapeutic antiplasmodial activity in vivo in mouse models of infection with Plasmodium berghei (CM) and Plasmodium chabaudi (blood-stage malaria), and can also block replication of different clinical isolates of P. falciparum in human erythrocytes infected ex vivo, including drug-resistant P. falciparum isolates. In vivo, a single dosing of CR-1-31B in P. berghei-infected animals is sufficient to provide protection against lethality. CR-1-31B is shown to dampen expression of the early proinflammatory response in myeloid cells in vitro and dampens the inflammatory response in vivo in P. berghei-infected mice. The dual activity of CR-1-31B as an antiplasmodial and as an inhibitor of the inflammatory response in myeloid cells should prove extremely valuable for therapeutic intervention in human cases of CM.


2015 ◽  
Vol 83 (4) ◽  
pp. 1406-1417 ◽  
Author(s):  
Jintao Guo ◽  
James A. McQuillan ◽  
Belinda Yau ◽  
Gregory S. Tullo ◽  
Carole A. Long ◽  
...  

Gamma interferon (IFN-γ) drives antiparasite responses and immunopathology during infection withPlasmodiumspecies. Immunity-related GTPases (IRGs) are a class of IFN-γ-dependent proteins that are essential for cell autonomous immunity to numerous intracellular pathogens. However, it is currently unknown whether IRGs modulate responses during malaria. We have used thePlasmodium bergheiANKA (PbA) model in which mice develop experimental cerebral malaria (ECM) to study the roles of IRGM1 and IRGM3 in immunopathology. Induction of mRNA forIrgm1andIrgm3was found in the brains and spleens of infected mice at times of peak IFN-γ production.Irgm3−/−but notIrgm1−/−mice were completely protected from the development of ECM, and this protection was associated with the decreased induction of inflammatory cytokines, as well as decreased recruitment and activation of CD8+T cells within the brain. Although antigen-specific proliferation of transferred CD8+T cells was not diminished compared to that of wild-type recipients following PbA infection, T cells transferred intoIrgm3−/−recipients showed a striking impairment of effector differentiation. Decreased induction of several inflammatory cytokines and chemokines (interleukin-6, CCL2, CCL3, and CCL4), as well as enhanced mRNA expression of type-I IFNs, was found in the spleens ofIrgm3−/−mice at day 4 postinfection. Together, these data suggest that protection from ECM pathology inIrgm3−/−mice occurs due to impaired generation of CD8+effector function. This defect is nonintrinsic to CD8+T cells. Instead, diminished T cell responses most likely result from defective initiation of inflammatory responses in myeloid cells.


2010 ◽  
Vol 6 (12) ◽  
pp. e1001221 ◽  
Author(s):  
Ashraful Haque ◽  
Shannon E. Best ◽  
Fiona H. Amante ◽  
Seri Mustafah ◽  
Laure Desbarrieres ◽  
...  

2020 ◽  
Author(s):  
Kunhua Huang ◽  
Xin Zhang ◽  
Li Huang ◽  
Hang Lin ◽  
Ziyi Yu ◽  
...  

Abstract Background: Cerebral malaria (CM) is a severe neurological manifestation caused by Plasmodium infection, with high morbidity and mortality rate, and long-term cognitive impairments in survivors. Exosomes are cell-derived nano-vesicles secreted by virtually all types of cells and serve as mediators of intercellular communication. Studies have demonstrated that mast cells (MCs) play a critical role in mediating malaria severity, however, the potential functions and pathological mechanisms of MCs-derived exosome (MCs-Exo) impacting on CM pathogenesis remain largely unknown. Methods: Herein, we utilized an experimental CM (ECM) murine model (C57BL/6 mice infected with P. berghei ANKA), and then intravenously (i.v.) injected MCs-Exo into ECM mice to investigate the effect of MCs-Exo on ECM pathogenies. We also used an in vitro model by investigating the pathogenesis development of brain microvascular endothelial cells line (bEnd.3 cells) upon MCs-Exo treatment after P. berghei ANKA blood-stage soluble antigen (PbAg) stimulation. Results: MCs-Exo were successfully isolated from culture supernatants of mouse MCs line (P815 cells) stimulated with PbAg, characterized by spherical vesicles with the diameter of 30–150 nm, expressing of typical exosomal markers, including CD9, CD81, and CD63. In vivo and ex vivo tracking showed that DiR-labeled MCs-Exo were taken up by liver and brain tissues after 6 h of i.v. injection. Compared with naive mice, ECM mice exhibited higher numbers of MCs and higher levels of MCs degranulation in various tissues (e.g., brain, cervical lymph node, and skin). The present of MCs-Exo dramatically shortened survival time, elevated incident of ECM, exacerbated liver and brain histopathological damage, promoted Th1 cytokine response, and aggravated brain vascular endothelial activation and blood brain barrier breakdown in ECM mice. Interestingly, compared with bEnd.3 cells stimulated with PbAg, the treatment of MCs-Exo led to decrease of cells viability, increase the mRNA levels of Ang-2, CCL2, CXCL1, and CXCL9, and decrease the mRNA levels of Ang-1, ZO-1, and Claudin-5. Conclusions: Thus, our data suggest that MCs-Exo could promote pathogenesis of ECM in mice.


Blood ◽  
2003 ◽  
Vol 101 (11) ◽  
pp. 4253-4259 ◽  
Author(s):  
Elodie Belnoue ◽  
Michèle Kayibanda ◽  
Jean-Christophe Deschemin ◽  
Mireille Viguier ◽  
Matthias Mack ◽  
...  

Abstract Infection of susceptible mouse strains with Plasmodium berghei ANKA (PbA) is a valuable experimental model of cerebral malaria (CM). Two major pathologic features of CM are the intravascular sequestration of infected erythrocytes and leukocytes inside brain microvessels. We have recently shown that only the CD8+ T-cell subset of these brain-sequestered leukocytes is critical for progression to CM. Chemokine receptor–5 (CCR5) is an important regulator of leukocyte trafficking in the brain in response to fungal and viral infection. Therefore, we investigated whether CCR5 plays a role in the pathogenesis of experimental CM. Approximately 70% to 85% of wild-type and CCR5+/- mice infected with PbA developed CM, whereas only about 20% of PbA-infected CCR5-deficient mice exhibited the characteristic neurologic signs of CM. The brains of wild-type mice with CM showed significant increases in CCR5+ leukocytes, particularly CCR5+ CD8+ T cells, as well as increases in T-helper 1 (Th1) cytokine production. The few PbA-infected CCR5-deficient mice that developed CM exhibited a similar increase in CD8+ T cells. Significant leukocyte accumulation in the brain and Th1 cytokine production did not occur in PbA-infected CCR5-deficient mice that did not develop CM. Moreover, experiments using bone marrow (BM)–chimeric mice showed that a reduced but significant proportion of deficient mice grafted with CCR5+ BM develop CM, indicating that CCR5 expression on a radiation-resistant brain cell population is necessary for CM to occur. Taken together, these results suggest that CCR5 is an important factor in the development of experimental CM.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
David S. Fischer ◽  
Meshal Ansari ◽  
Karolin I. Wagner ◽  
Sebastian Jarosch ◽  
Yiqi Huang ◽  
...  

AbstractThe in vivo phenotypic profile of T cells reactive to severe acute respiratory syndrome (SARS)-CoV-2 antigens remains poorly understood. Conventional methods to detect antigen-reactive T cells require in vitro antigenic re-stimulation or highly individualized peptide-human leukocyte antigen (pHLA) multimers. Here, we use single-cell RNA sequencing to identify and profile SARS-CoV-2-reactive T cells from Coronavirus Disease 2019 (COVID-19) patients. To do so, we induce transcriptional shifts by antigenic stimulation in vitro and take advantage of natural T cell receptor (TCR) sequences of clonally expanded T cells as barcodes for ‘reverse phenotyping’. This allows identification of SARS-CoV-2-reactive TCRs and reveals phenotypic effects introduced by antigen-specific stimulation. We characterize transcriptional signatures of currently and previously activated SARS-CoV-2-reactive T cells, and show correspondence with phenotypes of T cells from the respiratory tract of patients with severe disease in the presence or absence of virus in independent cohorts. Reverse phenotyping is a powerful tool to provide an integrated insight into cellular states of SARS-CoV-2-reactive T cells across tissues and activation states.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii111-ii111
Author(s):  
Lan Hoang-Minh ◽  
Angelie Rivera-Rodriguez ◽  
Fernanda Pohl-Guimarães ◽  
Seth Currlin ◽  
Christina Von Roemeling ◽  
...  

Abstract SIGNIFICANCE Adoptive T cell therapy (ACT) has emerged as the most effective treatment against advanced malignant melanoma, eliciting remarkable objective clinical responses in up to 75% of patients with refractory metastatic disease, including within the central nervous system. Immunologic surrogate endpoints correlating with treatment outcome have been identified in these patients, with clinical responses being dependent on the migration of transferred T cells to sites of tumor growth. OBJECTIVE We investigated the biodistribution of intravenously or intraventricularly administered T cells in a murine model of glioblastoma at whole body, organ, and cellular levels. METHODS gp100-specific T cells were isolated from the spleens of pmel DsRed transgenic C57BL/6 mice and injected intravenously or intraventricularly, after in vitro expansion and activation, in murine KR158B-Luc-gp100 glioma-bearing mice. To determine transferred T cell spatial distribution, the brain, lymph nodes, heart, lungs, spleen, liver, and kidneys of mice were processed for 3D imaging using light-sheet and multiphoton imaging. ACT T cell quantification in various organs was performed ex vivo using flow cytometry, 2D optical imaging (IVIS), and magnetic particle imaging (MPI) after ferucarbotran nanoparticle transfection of T cells. T cell biodistribution was also assessed in vivo using MPI. RESULTS Following T cell intravenous injection, the spleen, liver, and lungs accounted for more than 90% of transferred T cells; the proportion of DsRed T cells in the brains was found to be very low, hovering below 1%. In contrast, most ACT T cells persisted in the tumor-bearing brains following intraventricular injections. ACT T cells mostly concentrated at the periphery of tumor masses and in proximity to blood vessels. CONCLUSIONS The success of ACT immunotherapy for brain tumors requires optimization of delivery route, dosing regimen, and enhancement of tumor-specific lymphocyte trafficking and effector functions to achieve maximal penetration and persistence at sites of invasive tumor growth.


Sign in / Sign up

Export Citation Format

Share Document