scholarly journals Murine Immune Responses to Liver-Stage Antigen 1 Protein FMP011, a Malaria Vaccine Candidate, Delivered with Adjuvant AS01B or AS02A

2006 ◽  
Vol 75 (2) ◽  
pp. 838-845 ◽  
Author(s):  
Clara Brando ◽  
Lisa A. Ware ◽  
Helen Freyberger ◽  
April Kathcart ◽  
Arnoldo Barbosa ◽  
...  

ABSTRACT Liver-stage antigen 1 (LSA1) is expressed by Plasmodium falciparum only during the intrahepatic cell stage of the parasite's development. Immunoepidemiological studies in regions where malaria is endemic suggested an association between the level of LSA1-specific humoral and cell-mediated immune responses and susceptibility to clinical malaria. A recombinant LSA1 protein, FMP011, has been manufactured as a preerythrocytic vaccine to induce an immune response that would have the effect of controlling parasitemia and disease in humans. To evaluate the immunogenicity of FMP011, we analyzed the immune response of three inbred strains of mice to antigen immunization using two different adjuvant formulations, AS01B and AS02A. We report here the ability of BALB/c and A/J mice, but not C57BL/6J mice, to mount FMP011-specific humoral (antibody titer) and cellular (gamma interferon [IFN-γ] production) responses following immunization with FMP011 formulated in AS01B or AS02A. Immunization of BALB/c and A/J mice with FMP011/AS01B induced more antigen-specific IFN-γ-producing splenocytes than immunization with FMP011/AS02A. A slightly higher titer of antibody was induced using AS02A than AS01B in both strains. C57BL/6J mice did not respond with any detectable FMP011-specific IFN-γ splenocytes or antibody when immunized with FMP011 in AS01B or AS02A. Intracellular staining of cells isolated from FMP011/AS01B-immunized BALB/c mice indicated that CD4+ cells, but not CD8+ cells, were the main IFN-γ-producing splenocyte. However, inclusion of blocking anti-CD4+ antibody during the in vitro restimulation ELISpot analysis failed to completely abolish IFN-γ production, indicating that while CD4+ T cells were the major source of IFN-γ, other cell types also were involved.

2017 ◽  
Vol 3 (2) ◽  
pp. 28
Author(s):  
Desie Dwi Wisudanti

Kefir is a functional foodstuff of probiotics, made from fermented milk with kefir grains containing various types of beneficial bacteria and yeast. There have been many studies on the effects of oral kefir on the immune system, but few studies have shown the effect of bioactive components from kefir (peptides and exopolysaccharides/ kefiran), on immune responses. The purpose of this study was to prove the effect of kefir supernatant from milk goat on healthy immune volunteer response in vitro. The study was conducted on 15 healthy volunteers, then isolated PBMC from whole blood, then divided into 5 groups (K-, P1, P2, P3 and P4) before culture was done for 4 days. The harvested cells from culture were examined for the percentage of CD4+ T cells, CD8+ T cells, IFN-γ, IL-4 using flowsitometry and IL-2 levels, IL-10 using the ELISA method. The results obtained that kefir do not affect the percentage of CD4+ T cells and CD8+ T cells. The higher the concentration of kefir given, the higher levels of secreted IFN- γ and IL-4, but a decrease in IL-2 levels. Significant enhancement occurred at levels of IL-10 culture PBMC given kefir with various concentrations (p <0.01), especially at concentrations of 1%. These results also show the important effects of kefir bioactive components on immune responses. The conclusion of this study is that kefir can improve the immune response, through stimulation of IL-10 secretion in vitro.


2007 ◽  
Vol 76 (1) ◽  
pp. 161-169 ◽  
Author(s):  
René E. Vasquez ◽  
Lijun Xin ◽  
Lynn Soong

ABSTRACT Leishmania amazonensis can cause progressive disease in most inbred strains of mice. We have previously reported that treatment with CXCL10 activates macrophage (MΦ) effector function(s) in parasite killing and significantly delays lesion development in susceptible C57BL/6 mice via enhanced gamma interferon (IFN-γ) and interleukin 12 (IL-12) secretion; however, the mechanism underlying this enhanced immunity against L. amazonensis infection remains largely unresolved. In this study, we utilized stationary promastigotes to infect bone marrow-derived dendritic cells (DCs) of C57BL/6 mice and assessed the activation of DC subsets and the capacity of these DC subsets to prime CD4+ T cells in vitro. We found that CXCL10 induced IL-12 p40 production but reduced IL-10 production in uninfected DCs. Yet L. amazonensis-infected DCs produced elevated levels of IL-10 despite CXCL10 treatment. Elimination of endogenous IL-10 led to increased IL-12 p40 production in DCs as well as increased proliferation and IFN-γ production by in vitro-primed CD4+ T cells. In addition, CXCL10-treated CD4+ T cells became more responsive to IL-12 via increased expression of the IL-12 receptor β2 chain and produced elevated levels of IFN-γ. This report indicates the utility of CXCL10 in generating a Th1-favored, proinflammatory response, which is a prerequisite for controlling Leishmania infection.


1977 ◽  
Vol 145 (3) ◽  
pp. 766-771 ◽  
Author(s):  
CM Warner ◽  
JL McIvor ◽  
PH Maurer ◽  
CF Merryman

The genetic control of the immune response of inbred strains of mice to certain antigens has been demonstrated to be governed by a set of Ir genes linked to the major histocompatibility complex (H-2) of mice (1,2). Until recently, the control was thought to be governed by single, dominant genes, located within the I region of the H-2 complex. Merryman et al. (3) originally demonstrated that the immune response to the synthetic terpolymer L-glutamic acid, L-lysine, L-phenylaline (GLφ) is under dominant, H-2-linked Ir gene control (4-7). This was shown both by crossing two nonresponder parental strains to produce responder offspring in the F(1) generation, and by the analysis of appropriate recombinant stains of mice. The two complementing genes have been mapped in the IA and IC regions of the H-2 complex, and have been termed β and α, respectively (5,6). Thus, any strain of mouse may contain neither, one, or both genes. Only mice containing both genes are capable of responding to GLφ. It has been shown using F(1) hybrid and recombinant strains of mice, that the α- and β-genes can complement each other in either the cis (on the same chromosome) or in the trans (on different chromosomes) position (8). In this paper we report the results of studies aimed at answering the question of whether or not the α- and β- genes can complement each other when they are present in different lymphoid cells. To this end we have constructed allophenic mice composed of two nonresponder strains (A and C57BL/6), which show gene complementation in the F(1) generation. Allophenic mice are chimeras containing two cell types coexisting in a normal environment. The mice were tested for the specific cellular composition of the two parental cell types and were found to possess a complete range in the relative proportion of the two cell types. This report demonstrates that regardless of the mixture of cell types present in the allophenic mice, none of them were responders to GLφ. Thus no complementation of the α- and β-genes is seen when the two genes are present in different cells.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1384
Author(s):  
Haibo Feng ◽  
Jie Yang ◽  
Hui Zhi ◽  
Xin Hu ◽  
Yan Yang ◽  
...  

In this investigation, to maximize the desired immunoenhancement effects of PsEUL and stimulate an efficient humoral and cellular immune response against an antigen, PsEUL and the model antigen ovalbumin (OVA) were coupled using the N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC) reaction to yield a novel delivery system (PsEUL-OVA). The physicochemical characteristics and immune regulation effects of this new system were investigated. We found the yield of this EDC method to be 46.25%. In vitro, PsEUL-OVA (200 μg mL−1) could enhance macrophage proliferation and increase their phagocytic efficiency. In vivo, PsEUL-OVA could significantly increase the levels of OVA-specific antibody (IgG, IgG1, IgG2a, and IgG2b) titers and cytokine (IL-2, IL-4, IL-6, IFN-γ) levels. Additionally, it could activate T lymphocytes and facilitate the maturation of dendritic cells (DCs). These findings collectively suggested that PsEUL-OVA induced humoral and cellular immune responses by promoting the phagocytic activity of macrophages and DCs. Taken together, these results revealed that PsEUL-OVA had the potential to improve immune responses and provide a promising theoretical basis for the design of a novel delivery system.


Author(s):  
Nontobeko Thema ◽  
Alri Pretorius ◽  
Selaelo I. Tshilwane ◽  
Junita Liebenberg ◽  
Helena Steyn ◽  
...  

Secreted proteins are reported to induce cell-mediated immunity characterised by the production of interferon-gamma (IFN)-γ. In this study three open reading frames (ORFs) (Erum8060, Erum7760, Erum5000) encoding secreted proteins were selected from the Ehrlichia ruminantium (Welgevonden) genome sequence using bioinformatics tools to determine whether they induce a cellular immune response in vitro with mononuclear cells from needle and tick infected animals. The whole recombinant protein of the three ORFs as well as four adjacent fragments of the Erum5000 protein (Erum5000A, Erum5000B, Erum5000C, Erum5000D) were successfully expressed in a bacterial expression system which was confirmed by immunoblots using anti-His antibodies and sheep sera. These recombinant proteins were assayed with immune sheep and cattle peripheral blood mononuclear cells (PBMCs), spleen and lymph node (LN) cells to determine whether they induce recall cellular immune responses in vitro. Significant proliferative responses and IFN-γ production were evident for all recombinant proteins, especially Erum5000A, in both ruminant species tested. Thus overlapping peptides spanning Erum5000A were synthesised and peptides that induce proliferation of memory CD4+ and CD8+ T cells and production of IFN-γ were identified. These results illustrate that a Th1 type immune response was elicited and these recombinant proteins and peptides may therefore be promising candidates for development of a heartwater vaccine.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 868
Author(s):  
Fabiana Albani Zambuzi ◽  
Priscilla Mariane Cardoso-Silva ◽  
Ricardo Cardoso Castro ◽  
Caroline Fontanari ◽  
Flavio da Silva Emery ◽  
...  

Decitabine is an approved hypomethylating agent used for treating hematological malignancies. Although decitabine targets altered cells, epidrugs can trigger immunomodulatory effects, reinforcing the hypothesis of immunoregulation in treated patients. We therefore aimed to evaluate the impact of decitabine treatment on the phenotype and functions of monocytes and macrophages, which are pivotal cells of the innate immunity system. In vitro decitabine administration increased bacterial phagocytosis and IL-8 release, but impaired microbicidal activity of monocytes. In addition, during monocyte-to-macrophage differentiation, treatment promoted the M2-like profile, with increased expression of CD206 and ALOX15. Macrophages also demonstrated reduced infection control when exposed to Mycobacterium tuberculosis in vitro. However, cytokine production remained unchanged, indicating an atypical M2 macrophage. Furthermore, when macrophages were cocultured with lymphocytes, decitabine induced a reduction in the release of inflammatory cytokines such as IL-1β, TNF-α, and IFN-γ, maintaining IL-10 production, suggesting that decitabine could potentialize M2 polarization and might be considered as a therapeutic against the exacerbated immune response.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 255
Author(s):  
Wilmer Cuervo ◽  
Lorraine M. Sordillo ◽  
Angel Abuelo

Dairy calves are unable to mount an effective immune response during their first weeks of life, which contributes to increased disease susceptibility during this period. Oxidative stress (OS) diminishes the immune cell capabilities of humans and adult cows, and dairy calves also experience OS during their first month of life. However, the impact that OS may have on neonatal calf immunity remains unexplored. Thus, we aimed to evaluate the impact of OS on newborn calf lymphocyte functions. For this, we conducted two experiments. First, we assessed the association of OS status throughout the first month of age and the circulating concentrations of the cytokines interferon-gamma (IFN-γ) and interleukin (IL) 4, as well as the expression of cytokine-encoding genes IFNG, IL2, IL4, and IL10 in peripheral mononuclear blood cells (PBMCs) of 12 calves. Subsequently, we isolated PBMCs from another 6 neonatal calves to investigate in vitro the effect of OS on immune responses in terms of activation of lymphocytes, cytokine expression, and antibody production following stimulation with phorbol 12-myristate 13-acetate or bovine herpesvirus-1. The results were compared statistically through mixed models. Calves exposed to high OS status in their first month of age showed higher concentrations of IL-4 and expression of IL4 and IL10 and lower concentrations of IFN-γ and expression of IFNG and IL2 than calves exposed to lower OS. In vitro, OS reduced lymphocyte activation, production of antibodies, and protein and gene expression of key cytokines. Collectively, our results demonstrate that OS can compromise some immune responses of newborn calves. Hence, further studies are needed to explore the mechanisms of how OS affects the different lymphocyte subsets and the potential of ameliorating OS in newborn calves as a strategy to augment the functional capacity of calf immune cells, as well as enhance calves’ resistance to infections.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mary Jo Rademacher ◽  
Anahi Cruz ◽  
Mary Faber ◽  
Robyn A. A. Oldham ◽  
Dandan Wang ◽  
...  

AbstractInterleukin-12 (IL-12) is an inflammatory cytokine that has demonstrated efficacy for cancer immunotherapy, but systemic administration has detrimental toxicities. Lentiviral transduction eliciting IL-12-producing human sarcoma for autologous reintroduction provides localized delivery for both innate and adaptive immune response augmentation. Sarcoma cell lines and primary human sarcoma samples were transduced with recombinant lentivirus engineering expression of human IL-12 (hu-IL-12). IL-12 expressing sarcomas were assessed in vitro and in vivo following implantation into humanized NSG and transgenic human IL-15 expressing (NSG.Tg(Hu-IL-15)) murine models. Lentiviral transduction (LV/hu-IL-12) of human osteosarcoma, Ewing sarcoma and rhabdomyosarcoma cell lines, as well as low-passage primary human sarcomas, engendered high-level expression of hu-IL-12. Hu-IL-12 demonstrated functional viability, eliciting specific NK cell-mediated interferon-γ (IFN-γ) release and cytotoxic growth restriction of spheroids in vitro. In orthotopic xenograft murine models, the LV/hu-IL-12 transduced human sarcoma produced detectable IL-12 and elicited an IFN-γ inflammatory immune response specific to mature human NK reconstitution in the NSG.Tg(Hu-IL-15) model while restricting tumor growth. We conclude that LV/hu-IL-12 transduction of sarcoma elicits a specific immune reaction and the humanized NSG.Tg(Hu-IL-15) xenograft, with mature human NK cells, can define in vivo anti-tumor effects and systemic toxicities. IL-12 immunomodulation through autologous tumor transduction and reintroduction merits exploration for sarcoma treatment.


2013 ◽  
Vol 34 (6) ◽  
pp. 619-624 ◽  
Author(s):  
Antonino Catanzaro ◽  
Charles Daley

Studies over the past several decades have dramatically increased our understanding of the immune response to Mycobacterium tuberculosis infection, and advances in proteomics and genomics have led to a new class of immune-diagnostic tests, termed interferon-γ (IFN-γ) release assays (IGRAs), which appear to obviate many of the problems encountered with the tuberculin skin test (TST). Worldwide, 2 IGRAs are currently commercially available. QuantiFERON-TB Gold In-Tube (Cellestis) is a third-generation product that uses an enzyme-linked immunosorbent assay to measure IFN-γ generated in whole blood stimulated with M. tuberculosis–specific antigens. T-Spot-TB (Oxford Immunotec) employs enzyme-linked immunosorbent spot technology to enumerate the number of purified lymphocytes that respond to M. tuberculosis–specific antigens by producing IFN-γ. These in vitro tests measure the host immune response to M. tuberculosis–specific antigens, which virtually eliminates false-positive cross reactions caused by bacillus Calmette-Guérin vaccination and/or exposure to environmental nontuberculous mycobacteria that plague the interpretation and accuracy of the tuberculin skin test (TST). The high specificity of IGRAs, together with sensitivity commensurate with or better than that of the TST, promises an accurate diagnosis and the ability to focus tuberculosis-control activities on those who are actually infected with M. tuberculosis. The Third Global Symposium was held over a 3-day period and was presented by the University of California, San Diego, Continuing Medical Education department; slides and sound recordings of each presentation are available at http://cme.ucsd.edu/igras/syllabus.html. A moderated discussion is also available at http://cme.ucsd.edu/igrasvideo. This document provides a summary of the key findings of the meeting, specifically focusing on the use of IGRAs in screening healthcare worker populations.


2011 ◽  
Vol 19 (1) ◽  
pp. 84-95 ◽  
Author(s):  
Jin Huk Choi ◽  
Joe Dekker ◽  
Stephen C. Schafer ◽  
Jobby John ◽  
Craig E. Whitfill ◽  
...  

ABSTRACTThe immune response to recombinant adenoviruses is the most significant impediment to their clinical use for immunization. We test the hypothesis that specific virus-antibody combinations dictate the type of immune response generated against the adenovirus and its transgene cassette under certain physiological conditions while minimizing vector-induced toxicity.In vitroandin vivoassays were used to characterize the transduction efficiency, the T and B cell responses to the encoded transgene, and the toxicity of 1 × 1011adenovirus particles mixed with different concentrations of neutralizing antibodies. Complexes formed at concentrations of 500 to 0.05 times the 50% neutralizing dose (ND50) elicited strong virus- and transgene-specific T cell responses. The 0.05-ND50formulation elicited measurable anti-transgene antibodies that were similar to those of virus alone (P= 0.07). This preparation also elicited very strong transgene-specific memory T cell responses (28.6 ± 5.2% proliferation versus 7.7 ± 1.4% for virus alone). Preexisting immunity significantly reduced all responses elicited by these formulations. Although lower concentrations (0.005 and 0.0005 ND50) of antibody did not improve cellular and humoral responses in naïve animals, they did promote strong cellular (0.005 ND50) and humoral (0.0005 ND50) responses in mice with preexisting immunity. Some virus-antibody complexes may improve the potency of adenovirus-based vaccines in naïve individuals, while others can sway the immune response in those with preexisting immunity. Additional studies with these and other virus-antibody ratios may be useful to predict and model the type of immune responses generated against a transgene in those with different levels of exposure to adenovirus.


Sign in / Sign up

Export Citation Format

Share Document