scholarly journals LiaS Regulates Virulence Factor Expression in Streptococcus mutans

2008 ◽  
Vol 76 (7) ◽  
pp. 3093-3099 ◽  
Author(s):  
Patrick Chong ◽  
Laura Drake ◽  
Indranil Biswas

ABSTRACT Streptococcus mutans, a major oral pathogen responsible for dental caries formation, possesses a variety of mechanisms for survival in the human oral cavity, where the conditions of the external environment are diverse and in a constant state of flux. The formation of biofilms, survival under conditions of acidic pH, and production of mutacins are considered to be important virulence determinants displayed by this organism. Biofilm formation is facilitated by the production of GbpC, an important cell surface-associated protein that binds to glucan, an adhesive polysaccharide produced by the organism itself. To better understand the nature of the environmental cues that induce GbpC production, we examined the roles of 14 sensor kinases in the expression of gbpC in S. mutans strain UA159. We found that only the LiaS sensor kinase regulates gbpC expression, while the other sensor kinases had little or no effect on gbpC expression. We also found that while LiaS negatively regulates gbpC expression, the inactivation of its cognate response regulator, LiaR, does not appear to affect the expression of gbpC. Since both gbpC expression and mutacin IV production are regulated by a common regulatory network, we also tested the effect of the liaS mutation on mutacin production and found that LiaS positively regulates mutacin IV production. Furthermore, reverse transcription-PCR analysis suggests that LiaS does so by regulating the expression of nlmA, which encodes a peptide component of mutacin IV, and nlmT, which encodes an ABC transporter. As with the expression of gbpC, LiaR did not have any apparent effect on mutacin IV production. Based on the results of our study, we speculate that LiaS is engaged in cross talk with one or more response regulators belonging to the same family as LiaR, enabling LiaS to regulate the expression of several genes coding for virulence factors.

Microbiology ◽  
2003 ◽  
Vol 149 (10) ◽  
pp. 2809-2817 ◽  
Author(s):  
Shu-ichi Nakayama ◽  
Akira Kushiro ◽  
Takashi Asahara ◽  
Ryu-ichiro Tanaka ◽  
Lan Hu ◽  
...  

A two-component regulatory system, cpxR–cpxA, plays an important role in the pH-dependent regulation of virF, a global activator for virulence determinants including invasion genes, in Shigella sonnei. The authors examined whether the cpxR–cpxA homologues have some function in the expression of Salmonella enterica serovar Typhimurium invasion genes via the regulation of hilA, an activator for these genes. In a Salmonella cpxA mutant, the hilA expression level was reduced to less than 10 % of that in the parent strain at pH 6·0. This mutant strain also showed undetectable synthesis of an invasion gene product, SipC, at pH 6·0 and reduced cell invasion capacity – as low as 20 % of that of the parent. In this mutant, the reduction in hilA expression was much less marked at pH 8·0 than at pH 6·0 – no less than 50 % of that in the parent, and no significant reduction was observed in either SipC synthesis or cell invasion rate, compared to the parent. Unexpectedly, a Salmonella cpxR mutant strain and the parent showed no apparent difference in all three characteristics described above at either pH. These results indicate that in Salmonella, the sensor kinase CpxA activates hilA, and consequently, invasion genes and cell invasion capacity at pH 6·0. At pH 8·0, however, CpxA does not seem to have a large role in activation of these factors. Further, the results show that this CpxA-mediated activation does not require its putative cognate response regulator, CpxR. This suggests that CpxA may interact with regulator(s) other than CpxR to achieve activation at low pH.


2006 ◽  
Vol 188 (8) ◽  
pp. 3088-3098 ◽  
Author(s):  
Balakrishnan Venkatesh ◽  
Lavanya Babujee ◽  
Hui Liu ◽  
Pete Hedley ◽  
Takashi Fujikawa ◽  
...  

ABSTRACT The PhoPQ two-component system regulates virulence factors in Erwinia chrysanthemi, a pectinolytic enterobacterium that causes soft rot in several plant species. We characterized the effect of a mutation in phoQ, the gene encoding the sensor kinase PhoQ of the PhoPQ two-component regulatory system, on the global transcriptional profile of E. chrysanthemi using cDNA microarrays and further confirmed our results by quantitative reverse transcription-PCR analysis. Our results indicate that a mutation in phoQ affects transcription of at least 40 genes, even in the absence of inducing conditions. Enhanced expression of several genes involved in iron metabolism was observed in the mutant, including that of the acs operon that is involved in achromobactin biosynthesis and transport. This siderophore is required for full virulence of E. chrysanthemi, and its expression is governed by the global repressor protein Fur. Changes in gene expression were also observed for membrane transporters, stress-related genes, toxins, and transcriptional regulators. Our results indicate that the PhoPQ system governs the expression of several additional virulence factors and may also be involved in interactions with other regulatory systems.


2007 ◽  
Vol 189 (18) ◽  
pp. 6521-6531 ◽  
Author(s):  
Indranil Biswas ◽  
Laura Drake ◽  
Saswati Biswas

ABSTRACT Streptococcus mutans, the principal causative agent of dental caries, produces four glucan-binding proteins (Gbp) that play major roles in bacterial adherence and pathogenesis. One of these proteins, GbpC, is an important cell surface protein involved in biofilm formation. GbpC is also important for cariogenesis, bacteremia, and infective endocarditis. In this study, we examined the regulation of gbpC expression in S. mutans strain UA159. We found that gbpC expression attains the maximum level at mid-exponential growth phase, and the half-life of the transcript is less than 2 min. Expression from PgbpC was measured using a PgbpC-gusA transcriptional fusion reporter and was analyzed under various stress conditions, including thermal, osmotic, and acid stresses. Expression of gbpC is induced under conditions of thermal stress but is repressed during growth at low pH, whereas osmotic stress had no effect on expression from PgbpC. The results from the expression analyses were further confirmed using semiquantitative reverse transcription-PCR analysis. Our results also reveal that CovR, a global response regulator in many Streptococcus spp., represses gbpC expression at the transcriptional level. We demonstrated that purified CovR protein binds directly to the promoter region of PgbpC to repress gbpC expression. Using a DNase I protection assay, we showed that CovR binds to DNA sequences surrounding PgbpC from bases −68 to 28 (where base 1 is the start of transcription). In summary, our results indicate that various stress conditions modulate the expression of gbpC and that CovR negatively regulates the expression of the gbpC gene by directly binding to the promoter region.


2008 ◽  
Vol 190 (13) ◽  
pp. 4478-4488 ◽  
Author(s):  
Patrick Chong ◽  
Laura Drake ◽  
Indranil Biswas

ABSTRACT The biofilm-forming Streptococcus mutans is a gram-positive bacterium that resides in the human oral cavity and is considered to be the primary etiological agent in the formation of dental caries. The global response regulator CovR, which lacks a cognate sensor kinase, is essential for the pathogenesis and biofilm formation of this bacterium, but it is not clear how covR expression is regulated in S. mutans. In this communication, we present the results of our studies examining various factors that regulate the expression of covR in S. mutans UA159. The results of Southern hybridization and PCR analysis indicated that CovR is an orphan response regulator in various isolates of S. mutans. The transcriptional start site for covR was found to be 221 base pairs upstream of the ATG start codon, and site-directed mutagenesis of the upstream TATAAT box confirmed our findings. The expression of covR is growth phase dependent, with maximal expression observed during exponential-growth phase. While changes to the growth temperature did not significantly affect the expression of covR, increasing the pH or the concentration of Mg2+ in the growth medium leads to an increase in covR expression. The results of semiquantitative reverse transcriptase PCR analysis and in vivo transcriptional-fusion reporter assays indicated that CovR autoregulates its own expression; this was verified by the results of electrophoretic mobility shift assays and DNase I protection assays, which demonstrated direct binding of CovR to the promoter region. Apparently, regulation by Mg2+ and the autoregulation of covR are not linked. A detailed analysis of the regulation of CovR may lead to a better understanding of the pathogenesis of S. mutans, as well as providing further insight into the prevention of dental caries.


2008 ◽  
Vol 191 (3) ◽  
pp. 1056-1065 ◽  
Author(s):  
Jiaqin Zhang ◽  
Anirban Banerjee ◽  
Indranil Biswas

ABSTRACT Streptococcus mutans, the primary causative agent of human dental caries, contains a single copy of the gene encoding ClpP, the chief intracellular protease responsible for tolerance to various environmental stresses. To better understand the role of ClpP in stress response, we investigated the regulation of clpP expression in S. mutans. Using semiquantitative reverse transcription-PCR analysis, we observed that, under nonstressed conditions, clpP expression is somewhat constant throughout the growth phases, although it gradually decreases as cells enter the late stationary phase. The half-life of the clpP transcript was found to be less than 1 minute. Sequence analysis of the clpP locus reveals the presence of a 50-bp tandem repeat sequence located immediately upstream of the clpP promoter (PclpP). PCR and DNA sequence analyses suggest that the number of tandem repeat units can vary from as few as two to as many as nine, depending on the particular S. mutans isolate. Further analysis, using a transcriptional reporter fusion consisting of PclpP fused to a promoterless gusA gene, indicates that the presence of the repeat sequence region within PclpP results in an approximately fivefold increase in expression from PclpP compared to the repeat-free transcriptional reporter fusion. CtsR, a transcriptional repressor that negatively regulates clpP expression, has no effect on this repeat-mediated induction of clpP transcription. Furthermore, the repeat sequence is not necessary for the induction of clpP under stress conditions. Database searches indicate that the region containing the tandem repeats is absent in the clpP loci in other bacteria, including other closely related Streptococcus spp., suggesting that the repeat sequences are specific for the induction of clpP expression in S. mutans. We speculate that a host-specific transcriptional activator might be involved in the upregulation of clpP expression in S. mutans.


2000 ◽  
Vol 182 (5) ◽  
pp. 1423-1426 ◽  
Author(s):  
Peter De Wulf ◽  
E. C. C. Lin

ABSTRACT In Escherichia coli, the CpxA-CpxR two-component signal transduction system and the ςE and ς32response pathways jointly regulate gene expression in adaptation to adverse conditions. These include envelope protein distress, heat shock, oxidative stress, high pH, and entry into stationary phase. Certain mutant versions of the CpxA sensor protein (CpxA* proteins) exhibit an elevated ratio of kinase to phosphatase activity on CpxR, the cognate response regulator. As a result, CpxA* strains display numerous phenotypes, many of which cannot be easily related to currently known functions of the CpxA-CpxR pathway. It is unclear whether CpxA* phenotypes are caused solely by hyperphosphorylation of CpxR. We here report that all of the tested CpxA* phenotypes depend on elevated levels of CpxR-P and not on cross-signalling of CpxA* to noncognate response regulators.


2007 ◽  
Vol 189 (22) ◽  
pp. 8120-8129 ◽  
Author(s):  
Rosa Alduina ◽  
Luca Lo Piccolo ◽  
Davide D'Alia ◽  
Clelia Ferraro ◽  
Nina Gunnarsson ◽  
...  

ABSTRACT The actinomycete Nonomuraea sp. strain ATCC 39727 produces the glycopeptide A40926, the precursor of the novel antibiotic dalbavancin. Previous studies have shown that phosphate limitation results in enhanced A40926 production. The A40926 biosynthetic gene (dbv) cluster, which consists of 37 genes, encodes two putative regulators, Dbv3 and Dbv4, as well as the response regulator (Dbv6) and the sensor-kinase (Dbv22) of a putative two-component system. Reverse transcription-PCR (RT-PCR) and real-time RT-PCR analysis revealed that the dbv14-dbv8 and the dbv30-dbv35 operons, as well as dbv4, were negatively influenced by phosphate. Dbv4 shows a putative helix-turn-helix DNA-binding motif and shares sequence similarity with StrR, the transcriptional activator of streptomycin biosynthesis in Streptomyces griseus. Dbv4 was expressed in Escherichia coli as an N-terminal His6-tagged protein. The purified protein bound the dbv14 and dbv30 upstream regions but not the region preceding dbv4. Bbr, a Dbv4 ortholog from the gene cluster for the synthesis of the glycopeptide balhimycin, also bound to the dbv14 and dbv30 upstream regions, while Dbv4 bound appropriate regions from the balhimycin cluster. Our results provide new insights into the regulation of glycopeptide antibiotics, indicating that the phosphate-controlled regulator Dbv4 governs two key steps in A40926 biosynthesis: the biosynthesis of the nonproteinogenic amino acid 3,5-dihydroxyphenylglycine and critical tailoring reactions on the heptapeptide backbone.


2016 ◽  
Vol 198 (11) ◽  
pp. 1604-1609 ◽  
Author(s):  
Shunpei Miwa ◽  
Eri Kihira ◽  
Akinori Yoshioka ◽  
Kaoru Nakasone ◽  
Sho Okamoto ◽  
...  

ABSTRACTTropolone, a phytotoxin produced byBurkholderia plantarii, causes rice seedling blight. To identify genes involved in tropolone synthesis, we systematically constructed mutations in the genes encoding 55 histidine kinases and 72 response regulators. From the resulting defective strains, we isolated three mutants, KE1, KE2, and KE3, in which tropolone production was repressed. The deleted genes of these mutants were namedtroR1,troK, andtroR2, respectively. The mutant strains did not cause rice seedling blight, and complementation experiments indicated that TroR1, TroK, and TroR2 were involved in the synthesis of tropolone inB. plantarii. However, tropolone synthesis was repressed in the TroR1 D52A, TroK H253A, and TroR2 D46A site-directed mutants. These results suggest that the putative sensor kinase (TroK) and two response regulators (TroR1 and TroR2) control the production of tropolone inB. plantarii.IMPORTANCEA two-component system is normally composed of a sensor histidine kinase (HK) and a cognate response regulator (RR) pair. In this study, HK (TroK) and two RRs (TroR1 and TroR2) were found to be involved in controlling tropolone production inB. plantarii. These three genes may be part of a bacterial signal transduction network. Such networks are thought to exist in other bacteria to regulate phytotoxin production, as well as environmental adaptation and signal transduction.


2020 ◽  
Author(s):  
Marina Giannakara ◽  
Vassiliki Lila Koumandou

AbstractQuorum sensing (QS) is a cell-to-cell communication system that enables bacteria to coordinate their gene expression depending on their population density, via the detection of small molecules called autoinducers. In this way bacteria can act collectively to initiate processes like bioluminescence, virulence and biofilm formation. Autoinducers are detected by receptors, some of which are part of Two Component Signal Transduction Systems (TCS), which comprise of a sensor histidine kinase (usually membrane-bound) and a cognate response regulator. Different QS systems are used by different bacterial taxa, and their relative evolutionary relationships have not been extensively studied. To address this, we used the KEGG database to identify all the QS receptors and response regulators that are part of TCS and collected their amino acid sequences from different species. In order to discover their evolutionary relationships: (i) we compared the combinations of the highly conserved domains in the different receptors and response regulators using the SMART and KEGG databases, and (ii) we constructed and compared phylogenetic trees, based on neighbor-joining and maximum likelihood methods. For both the QS receptors and the response regulators, our analysis indicates certain close evolutionary relationships, highlight a common evolutionary history, and which can inform future applications, such as the design of novel inhibitors for pathogenic QS systems.


2006 ◽  
Vol 188 (11) ◽  
pp. 3944-3951 ◽  
Author(s):  
Scott M. Ward ◽  
Arjan F. Bormans ◽  
Michael D. Manson

ABSTRACT Signal-transducing proteins that span the cytoplasmic membrane transmit information about the environment to the interior of the cell. In bacteria, these signal transducers include sensor kinases, which typically control gene expression via response regulators, and methyl-accepting chemoreceptor proteins, which control flagellar rotation via the CheA kinase and CheY response regulator. We previously reported that a chimeric protein (Nart) that joins the ligand-binding, transmembrane, and linker regions of the NarX sensor kinase to the signaling and adaptation domains of the Tar chemoreceptor elicits a repellent response to nitrate and nitrite. As with NarX, nitrate evokes a stronger response than nitrite. Here we show that mutations targeting a highly conserved sequence (the P box) in the periplasmic domain alter chemoreception by Nart and signaling by NarX similarly. In particular, the G51R substitution converts Nart from a repellent receptor into an attractant receptor for nitrate. Our results underscore the conclusion that the fundamental mechanism of transmembrane signaling is conserved between homodimeric sensor kinases and chemoreceptors. They also highlight the plasticity of the coupling between ligand binding and signal output in these systems.


Sign in / Sign up

Export Citation Format

Share Document