scholarly journals Phospholipid Composition of PurifiedChlamydia trachomatis Mimics That of the Eucaryotic Host Cell

1998 ◽  
Vol 66 (8) ◽  
pp. 3727-3735 ◽  
Author(s):  
Grant M. Hatch ◽  
Grant McClarty

ABSTRACT Chlamydia trachomatis is an obligate intracellular eubacterial parasite capable of infecting a wide range of eucaryotic host cells. Purified chlamydiae contain several lipids typically found in eucaryotes, and it has been established that eucaryotic lipids are transported from the host cell to the parasite. In this report, we examine the phospholipid composition of C. trachomatispurified from host cells grown under a variety of conditions in which the cellular phospholipid composition was altered. A mutant CHO cell line, with a thermolabile CDP-choline synthetase, was used to show that decreased host cell phosphatidylcholine levels had no significant effect on C. trachomatis growth. However, less phosphatidylcholine was transported to the parasite and purified elementary bodies contained decreased levels of phosphatidylcholine. Brefeldin A, fumonisin B1, and exogenous sphingomyelinase were used to alter levels of host cell sphingomyelin. None of the agents had a significant effect on C. trachomatisreplication. Treatment with fumonisin B1 and exogenous sphingomyelinase resulted in decreased levels of host cell sphingomyelin. This had no effect on glycerophospholipid trafficking to chlamydiae; however, sphingomyelin trafficking was reduced and elementary bodies purified from treated cells had reduced sphingomyelin content. Exposure to brefeldin A, which had no adverse effect on chlamydia growth, resulted in an increase in cellular levels of sphingomyelin and a concomitant increase in the amount of sphingomyelin in purified chlamydiae. Under the experimental conditions used, brefeldin A treatment had only a small effect on sphingomyelin trafficking to the host cell surface or to C. trachomatis. Thus, the final phospholipid composition of purified C. trachomatis mimics that of the host cell in which it is grown.

2004 ◽  
Vol 72 (11) ◽  
pp. 6341-6350 ◽  
Author(s):  
Yanji Xu ◽  
Peter M. Takvorian ◽  
Ann Cali ◽  
George Orr ◽  
Louis M. Weiss

ABSTRACT The microsporidia are ubiquitous, obligate intracellular eukaryotic spore-forming parasites infecting a wide range of invertebrates and vertebrates, including humans. The defining structure of microsporidia is the polar tube, which forms a hollow tube through which the sporoplasm is transferred to the host cell. Research on the molecular and cellular biology of the polar tube has resulted in the identification of three polar tube proteins: PTP1, PTP2, and PTP3. The major polar tube protein, PTP1, accounts for at least 70% of the mass of the polar tube. In the present study, PTP1 was found to be posttranslationally modified. Concanavalin A (ConA) bound to PTP1 and to the polar tube of several different microsporidia species. Analysis of the glycosylation of Encephalitozoon hellem PTP1 suggested that it is modified by O-linked mannosylation, and ConA binds to these O-linked mannose residues. Mannose pretreatment of RK13 host cells decreased their infection by E. hellem, consistent with an interaction between the mannosylation of PTP1 and some unknown host cell mannose-binding molecule. A CHO cell line (Lec1) that is unable to synthesize complex-type N-linked oligosaccharides had an increased susceptibility to E. hellem infection compared to wild-type CHO cells. These data suggest that the O-mannosylation of PTP1 may have functional significance for the ability of microsporidia to invade their host cells.


2021 ◽  
Vol 9 (5) ◽  
pp. 1015
Author(s):  
Tianyu Zhang ◽  
Xin Gao ◽  
Dongqiang Wang ◽  
Jixue Zhao ◽  
Nan Zhang ◽  
...  

Cryptosporidium parvum is a globally recognized zoonotic parasite of medical and veterinary importance. This parasite mainly infects intestinal epithelial cells and causes mild to severe watery diarrhea that could be deadly in patients with weakened or defect immunity. However, its molecular interactions with hosts and pathogenesis, an important part in adaptation of parasitic lifestyle, remain poorly understood. Here we report the identification and characterization of a C. parvum T-cell immunomodulatory protein homolog (CpTIPH). CpTIPH is a 901-aa single-pass type I membrane protein encoded by cgd5_830 gene that also contains a short Vibrio, Colwellia, Bradyrhizobium and Shewanella (VCBS) repeat and relatively long integrin alpha (ITGA) N-terminus domain. Immunofluorescence assay confirmed the location of CpTIPH on the cell surface of C. parvum sporozoites. In congruence with the presence of VCBS repeat and ITGA domain, CpTIPH displayed high, nanomolar binding affinity to host cell surface (i.e., Kd(App) at 16.2 to 44.7 nM on fixed HCT-8 and CHO-K1 cells, respectively). The involvement of CpTIPH in the parasite invasion is partly supported by experiments showing that an anti-CpTIPH antibody could partially block the invasion of C. parvum sporozoites into host cells. These observations provide a strong basis for further investigation of the roles of CpTIPH in parasite-host cell interactions.


2020 ◽  
Vol 8 (2) ◽  
pp. 164 ◽  
Author(s):  
Xifang Zhu ◽  
Yaqi Dong ◽  
Eric Baranowski ◽  
Xixi Li ◽  
Gang Zhao ◽  
...  

Molecules contributing to microbial cytoadhesion are important virulence factors. In Mycoplasma bovis, a minimal bacterium but an important cattle pathogen, binding to host cells is emerging as a complex process involving a broad range of surface-exposed structures. Here, a new cytoadhesin of M. bovis was identified by producing a collection of individual knock-out mutants and evaluating their binding to embryonic bovine lung cells. The cytoadhesive-properties of this surface-exposed protein, which is encoded by Mbov_0503 in strain HB0801, were demonstrated at both the mycoplasma cell and protein levels using confocal microscopy and ELISA. Although Mbov_0503 disruption was only associated in M. bovis with a partial reduction of its binding capacity, this moderate effect was sufficient to affect M. bovis interaction with the host-cell tight junctions, and to reduce the translocation of this mycoplasma across epithelial cell monolayers. Besides demonstrating the capacity of M. bovis to disrupt tight junctions, these results identified novel properties associated with cytoadhesin that might contribute to virulence and host colonization. These findings provide new insights into the complex interplay taking place between wall-less mycoplasmas and the host-cell surface.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jingwen Yue ◽  
Weihua Jin ◽  
Hua Yang ◽  
John Faulkner ◽  
Xuehong Song ◽  
...  

The severe acute respiratory syndrome (SARS)-like coronavirus disease (COVID-19) is caused by SARS-CoV-2 and has been a serious threat to global public health with limited treatment. Cellular heparan sulfate (HS) has been found to bind SARS-CoV-2 spike protein (SV2-S) and co-operate with cell surface receptor angiotensin-converting enzyme 2 (ACE2) to mediate SARS-CoV-2 infection of host cells. In this study, we determined that host cell surface SV2-S binding depends on and correlates with host cell surface HS expression. This binding is required for SARS-Cov-2 virus to infect host cells and can be blocked by heparin lyase, HS antagonist surfen, heparin, and heparin derivatives. The binding of heparin/HS to SV2-S is mainly determined by its overall sulfation with potential, minor contribution of specific SV2-S binding motifs. The higher binding affinity of SV2-S G614 mutant to heparin and upregulated HS expression may be one of the mechanisms underlying the higher infectivity of the SARS-CoV-2 G614 variant and the high vulnerability of lung cancer patients to SARS-CoV-2 infection, respectively. The higher host cell infection by SARS-CoV-2 G614 variant pseudovirus and the increased infection caused by upregulated HS expression both can be effectively blocked by heparin lyase and heparin, and possibly surfen and heparin derivatives too. Our findings support blocking HS-SV2-S interaction may provide one addition to achieve effective prevention and/treatment of COVID-19.


2018 ◽  
Author(s):  
Rebecca L. Lamason ◽  
Natasha M. Kafai ◽  
Matthew D. Welch

AbstractThe rickettsiae are obligate intracellular alphaproteobacteria that exhibit a complex infectious life cycle in both arthropod and mammalian hosts. As obligate intracellular bacteria,Rickettsiaare highly adapted to living inside a variety of host cells, including vascular endothelial cells during mammalian infection. Although it is assumed that the rickettsiae produce numerous virulence factors that usurp or disrupt various host cell pathways, they have been challenging to genetically manipulate to identify the key bacterial factors that contribute to infection. Motivated to overcome this challenge, we sought to expand the repertoire of available rickettsial loss-of-function mutants, using an improvedmariner-based transposon mutagenesis scheme. Here, we present the isolation of over 100 transposon mutants in the spotted fever group speciesRickettsia parkeri. These mutants targeted genes implicated in a variety of pathways, including bacterial replication and metabolism, hypothetical proteins, the type IV secretion system, as well as factors with previously established roles in host cell interactions and pathogenesis. Given the need to identify critical virulence factors, forward genetic screens such as this will provide an excellent platform to more directly investigate rickettsial biology and pathogenesis.


2014 ◽  
Vol 13 (8) ◽  
pp. 965-976 ◽  
Author(s):  
Ira J. Blader ◽  
Anita A. Koshy

ABSTRACTIntracellular pathogens can replicate efficiently only after they manipulate and modify their host cells to create an environment conducive to replication. While diverse cellular pathways are targeted by different pathogens, metabolism, membrane and cytoskeletal architecture formation, and cell death are the three primary cellular processes that are modified by infections.Toxoplasma gondiiis an obligate intracellular protozoan that infects ∼30% of the world's population and causes severe and life-threatening disease in developing fetuses, in immune-comprised patients, and in certain otherwise healthy individuals who are primarily found in South America. The high prevalence ofToxoplasmain humans is in large part a result of its ability to modulate these three host cell processes. Here, we highlight recent work defining the mechanisms by whichToxoplasmainteracts with these processes. In addition, we hypothesize why some processes are modified not only in the infected host cell but also in neighboring uninfected cells.


mBio ◽  
2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Pallab Ghosh ◽  
Elizabeth M. Halvorsen ◽  
Dustin A. Ammendolia ◽  
Nirit Mor-Vaknin ◽  
Mary X. D. O’Riordan ◽  
...  

ABSTRACTListeria monocytogenesis a facultative intracellular bacterial pathogen that is frequently associated with food-borne infection. Of particular concern is the ability ofL. monocytogenesto breach the blood-brain barrier, leading to life-threatening meningitis and encephalitis. The mechanisms used by bacterial pathogens to infect the brain are not fully understood. Here we show thatL. monocytogenesis able to utilize vimentin for invasion of host cells. Vimentin is a type III intermediate filament protein within the cytosol but is also expressed on the host cell surface. We found thatL. monocytogenesinteraction with surface-localized vimentin promoted bacterial uptake. Furthermore, in the absence of vimentin,L. monocytogenescolonization of the brain was severely compromised in mice. TheL. monocytogenesvirulence factor InlF was found to bind vimentin and was necessary for optimal bacterial colonization of the brain. These studies reveal a novel receptor-ligand interaction that enhances infection of the brain byL. monocytogenesand highlights the importance of surface vimentin in host-pathogen interactions.IMPORTANCEListeria monocytogenesis an intracellular bacterial pathogen that is capable of invading numerous host cells during infection.L. monocytogenescan cross the blood-brain barrier, leading to life-threatening meningitis. Here we show that anL. monocytogenessurface protein, InlF, is necessary for optimal colonization of the brain in mice. Furthermore, in the absence of vimentin, a cytosolic intermediate filament protein that is also present on the surface of brain endothelial cells, colonization of the brain was significantly impaired. We further show that InlF binds vimentin to mediate invasion of host cells. This work identifies InlF as a bacterial surface protein with specific relevance for infection of the brain and underscores the significance of host cell surface vimentin interactions in microbial pathogenesis.


1995 ◽  
Vol 108 (6) ◽  
pp. 2457-2464 ◽  
Author(s):  
J.H. Morisaki ◽  
J.E. Heuser ◽  
L.D. Sibley

Toxoplasma gondii is an obligate intracellular parasite that infects a wide variety of vertebrate cells including macrophages. We have used a combination of video microscopy and fluorescence localization to examine the entry of Toxoplasma into macrophages and nonphagocytic host cells. Toxoplasma actively invaded host cells without inducing host cell membrane ruffling, actin microfilament reorganization, or tyrosine phosphorylation of host proteins. Invasion occurred rapidly and within 25–40 seconds the parasite penetrated into a tight-fitting vacuole formed by invagination of the plasma membrane. In contrast, during phagocytosis of Toxoplasma, extensive membrane ruffling captured the parasite in a loose-fitting phagosome that formed over a period of 2–4 minutes. Phagocytosis involved both reorganization of the host cytoskeleton and tyrosine phosphorylation of host proteins. In some cases, parasites that were first internalized by phagocytosis, were able to escape from the phagosome by a process analogous to invasion. These studies reveal that active penetration of the host cell by Toxoplasma is fundamentally different from phagocytosis or induced endocytic uptake. The novel ability to penetrate the host cell likely contributes to the capability of Toxoplasma-containing vacuoles to avoid endocytic processing.


2010 ◽  
Vol 76 (21) ◽  
pp. 7068-7075 ◽  
Author(s):  
Huiling Guo ◽  
Xiaona Chu ◽  
Jiangyong Hu

ABSTRACT UV disinfection is highly effective against most pathogens, with the exception of the adenoviruses (AD). To date, many studies have focused on low-pressure (LP) UV inactivation of AD, but little is known about the effect of medium-pressure (MP) UV inactivation of AD. Despite numerous studies of LP UV inactivation of AD, extreme variabilities in the LP UV dose requirements of AD had been observed because of differing experimental conditions used, such as the types of cell lines used for AD enumeration. This study therefore investigates the effect of three different host cell lines (PLC/PRF/5, human embryonic kidney 293 [HEK293], and XP17BE) on the LP and MP UV dose requirements of AD serotype 5 (AD5), AD40, and AD41 under similar experimental settings. Results showed that for 4-log inactivation of AD, LP UV and MP UV doses needed to be in the ranges of 123 to 182 mJ/cm2 and 65 to 90 mJ/cm2, respectively, when HEK293 and PLC/PRF/5 cells were used for enumeration. The UV doses required for MP UV inactivation of AD were significantly lower than those required for LP UV inactivation (P value < 0.05). When different cell lines were used for enumeration, UV dose requirements for AD differed. AD were portrayed to be most susceptible to UV (LP UV doses of <57 mJ/cm2 and MP UV doses of <42 mJ/cm2 for 4-log AD inactivation) when the XP17BE cells were used as the host cell. The use of different cell lines for AD enumeration affected LP UV dose results more significantly than MP UV dose results (P value < 0.05). Cell line variability factors for LP UV disinfection (CLLP) and MP UV disinfection (CLMP) for AD5, AD40, and AD41 enumerated with HEK293, PLC/PRF/5, and XP17BE cells were in the ranges of 1.0 to 3.2 and 1.0 to 2.5, respectively.


2004 ◽  
Vol 78 (18) ◽  
pp. 9666-9674 ◽  
Author(s):  
G. Grant Welstead ◽  
Eric C. Hsu ◽  
Caterina Iorio ◽  
Shelly Bolotin ◽  
Christopher D. Richardson

ABSTRACT Measles virus has been reported to enter host cells via either of two cellular receptors, CD46 and CD150 (SLAM). CD46 is found on most cells of higher primates, while SLAM is expressed on activated B, T, and dendritic cells and is an important regulatory molecule of the immune system. Previous reports have shown that measles virus can down regulate expression of its two cellular receptors on the host cell surface during infection. In this study, the process of down regulation of SLAM by measles virus was investigated. We demonstrated that expression of the hemagglutinin (H) protein of measles virus was sufficient for down regulation. Our studies provided evidence that interactions between H and SLAM in the endoplasmic reticulum (ER) can promote the down regulation of SLAM but not CD46. In addition, we demonstrated that interactions between H and SLAM at the host cell surface can also contribute to SLAM down regulation. These results indicate that two mechanisms involving either intracellular interactions between H and SLAM in the ER or receptor-mediated binding to H at the surfaces of host cells can lead to the down regulation of SLAM during measles virus infection.


Sign in / Sign up

Export Citation Format

Share Document