scholarly journals Candida albicans and Candida krusei Differentially Induce Human Blood Mononuclear Cell Interleukin-12 and Gamma Interferon Production

2000 ◽  
Vol 68 (5) ◽  
pp. 2464-2469 ◽  
Author(s):  
Jingbo Xiong ◽  
Kefei Kang ◽  
Liming Liu ◽  
Yuichi Yoshida ◽  
Kevin D. Cooper ◽  
...  

ABSTRACT Protection against Candida infection involves both innate and acquired immune responses, and cytokines produced by monocytes during the innate response may modify the acquired immune response by T cells. We hypothesized that Candida species which differ in pathogenicity can differentially induce production of immunoregulatory cytokines by human monocytes, which in turn modify T cells for immune responses to Candida. To test this hypothesis, we examined the effects of Candida albicans andCandida krusei on immunoregulatory cytokine production by human monocytes and gamma interferon (IFN-γ) production by peripheral blood mononuclear cells (PBMC). Purified monocytes were incubated with live or heat-killed strains of C. albicans and C. krusei at the optimal Candida/monocyte ratio of 0.5. Cytokines in the supernatants were measured by enzyme-linked immunosorbent assay. Our data demonstrated that live C. albicans and C. krusei significantly induced interleukin-10 (IL-10), monocyte chemotactic factor 1, IL-1β, and tumor necrosis factor alpha production by monocytes relative to unstimulated monocytes. In contrast, unlike C. krusei, pathogenic live strains of C. albicans induced no or only a minimal level of IL-12. The expression of IL-12 p40 mRNA levels by reverse transcription-PCR corroborated the IL-12 protein (p70) findings. In human PBMC, human blood monocytes were the major source of both IL-10 and IL-12 production in response to C. albicansand C. krusei. Upon activation of T cells in the presence of Candida-modified monocytes and antigen-presenting cells, IL-12 production by PBMC treated with Candida organisms correlated strongly with the level of IFN-γ production by T cells. These results indicate that the virulence of C. albicansmay be related to its ability to induce the monocytic type II cytokine IL-10, with a selective inhibition of IL-12 production, which may be responsible for the observed lack of T-cell IFN-γ and may restrain an effective type I immune response to Candida.

2010 ◽  
Vol 78 (6) ◽  
pp. 2653-2666 ◽  
Author(s):  
Hideyuki Shiomi ◽  
Atsuhiro Masuda ◽  
Shin Nishiumi ◽  
Masayuki Nishida ◽  
Tetsuya Takagawa ◽  
...  

ABSTRACT Citrobacter rodentium, a murine model pathogen for enteropathogenic Escherichia coli, colonizes the surface of intestinal epithelial cells and causes mucosal inflammation. This bacterium is an ideal model for investigating pathogen-host immune interactions in the gut. It is well known that gene transcripts for Th1 cytokines are highly induced in colonic tissue from mice infected with C. rodentium. However, it remains to be seen whether the Th1 or Th2 cytokines produced by antigen-specific CD4+ T cells provide effective regulation of the host immune defense against C. rodentium infection. To investigate the antigen-specific immune responses, C. rodentium expressing ovalbumin (OVA-C. rodentium), a model antigen, was generated and used to define antigen-specific responses under gamma interferon (IFN-γ)-deficient or interleukin-4 (IL-4)-deficient conditions in vivo. The activation of antigen-specific CD4+ T cells and macrophage phagocytosis were evaluated in the presence of IFN-γ or IL-4 in vitro. IFN-γ-deficient mice exhibited a loss of body weight and a higher bacterial concentration in feces during OVA-C. rodentium infection than C57BL/6 (wild type) or IL-4-deficient mice. This occurred through the decreased efficiency of macrophage phagocytosis and the activation of antigen-specific CD4+ T cells. Furthermore, a deficiency in antigen-specific CD4+ T-cell-expressed IFN-γ led to a higher susceptibility to mucosal and gut-derived systemic OVA-C. rodentium infection. These results show that the IFN-γ produced by antigen-specific CD4+ T cells plays an important role in the defense against C. rodentium.


2017 ◽  
Vol 3 (2) ◽  
pp. 28
Author(s):  
Desie Dwi Wisudanti

Kefir is a functional foodstuff of probiotics, made from fermented milk with kefir grains containing various types of beneficial bacteria and yeast. There have been many studies on the effects of oral kefir on the immune system, but few studies have shown the effect of bioactive components from kefir (peptides and exopolysaccharides/ kefiran), on immune responses. The purpose of this study was to prove the effect of kefir supernatant from milk goat on healthy immune volunteer response in vitro. The study was conducted on 15 healthy volunteers, then isolated PBMC from whole blood, then divided into 5 groups (K-, P1, P2, P3 and P4) before culture was done for 4 days. The harvested cells from culture were examined for the percentage of CD4+ T cells, CD8+ T cells, IFN-γ, IL-4 using flowsitometry and IL-2 levels, IL-10 using the ELISA method. The results obtained that kefir do not affect the percentage of CD4+ T cells and CD8+ T cells. The higher the concentration of kefir given, the higher levels of secreted IFN- γ and IL-4, but a decrease in IL-2 levels. Significant enhancement occurred at levels of IL-10 culture PBMC given kefir with various concentrations (p <0.01), especially at concentrations of 1%. These results also show the important effects of kefir bioactive components on immune responses. The conclusion of this study is that kefir can improve the immune response, through stimulation of IL-10 secretion in vitro.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Yuanyuan Zhu ◽  
Xiang An ◽  
Xiao Zhang ◽  
Yu Qiao ◽  
Tongsen Zheng ◽  
...  

Abstract The aberrant appearance of DNA in the cytoplasm triggers the activation of cGAS-cGAMP-STING signaling and induces the production of type I interferons, which play critical roles in activating both innate and adaptive immune responses. Recently, numerous studies have shown that the activation of STING and the stimulation of type I IFN production are critical for the anticancer immune response. However, emerging evidence suggests that STING also regulates anticancer immunity in a type I IFN-independent manner. For instance, STING has been shown to induce cell death and facilitate the release of cancer cell antigens. Moreover, STING activation has been demonstrated to enhance cancer antigen presentation, contribute to the priming and activation of T cells, facilitate the trafficking and infiltration of T cells into tumors and promote the recognition and killing of cancer cells by T cells. In this review, we focus on STING and the cancer immune response, with particular attention to the roles of STING activation in the cancer-immunity cycle. Additionally, the negative effects of STING activation on the cancer immune response and non-immune roles of STING in cancer have also been discussed.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Jennifer D. Helble ◽  
Rodrigo J. Gonzalez ◽  
Ulrich H. von Andrian ◽  
Michael N. Starnbach

ABSTRACT While there is no effective vaccine against Chlamydia trachomatis infection, previous work has demonstrated the importance of C. trachomatis-specific CD4+ T cells (NR1 T cells) in pathogen clearance. Specifically, NR1 T cells have been shown to be protective in mice, and this protection depends on the host’s ability to sense the cytokine gamma interferon (IFN-γ). However, it is unclear what role NR1 production or sensing of IFN-γ plays in T cell homing to the genital tract or T cell-mediated protection against C. trachomatis. Using two-photon microscopy and flow cytometry, we found that naive wild-type (WT), IFN-γ−/−, and IFN-γR−/− NR1 T cells specifically home to sections in the genital tract that contain C. trachomatis. We also determined that protection against infection requires production of IFN-γ from either NR1 T cells or endogenous cells, further highlighting the importance of IFN-γ in clearing C. trachomatis infection. IMPORTANCE Chlamydia trachomatis is an important mucosal pathogen that is the leading cause of sexually transmitted bacterial infections in the United States. Despite this, there is no vaccine currently available. In order to develop such a vaccine, it is necessary to understand the components of the immune response that can lead to protection against this pathogen. It is well known that antigen-specific CD4+ T cells are critical for Chlamydia clearance, but the contexts in which they are protective or not protective are unknown. Here, we aimed to characterize the importance of gamma interferon production and sensing by T cells and the effects on the immune response to C. trachomatis. Our work here helps to define the contexts in which antigen-specific T cells can be protective, which is critical to our ability to design an effective and protective vaccine against C. trachomatis.


2001 ◽  
Vol 75 (20) ◽  
pp. 9596-9600 ◽  
Author(s):  
Sabine Vollstedt ◽  
Marco Franchini ◽  
Gottfried Alber ◽  
Mathias Ackermann ◽  
Mark Suter

ABSTRACT Interferon (IFN) type I (alpha/beta IFN [IFN-α/β]) is very important in directly controlling herpes simplex virus type I (HSV-1) replication as well as in guiding and upregulating specific immunity against this virus. By contrast, the roles of IFN type II (IFN-γ) and antibodies in the defense against HSV-1 are not clear. Mice without a functional IFN system and no mature B and T cells (AGR mice) did not survive HSV-1 infection in the presence or absence of neutralizing antibodies to the virus. Mice without a functional IFN type I system and with no mature B and T cells (AR129 mice) were unable to control infection with as little as 10 PFU of HSV-1 strain F. By contrast, in the presence of passively administered neutralizing murine antibodies to HSV-1, some AR129 mice survived infection with up to104PFU of HSV-1. This acute immune response was dependent on the presence of interleukin-12 (IL-12) p75. Interestingly, some virus-infected mice stayed healthy for several months, at which time antibody to HSV-1 was no longer detectable. Treatment of these virus-exposed mice with dexamethasone led to death in approximately 40% of the mice. HSV-1 was found in brains of mice that did not survive dexamethasone treatment, whereas HSV-1 was absent in those that survived the treatment. We conclude that in the presence of passively administered HSV-1-specific antibodies, the IL-12-induced IFN-γ-dependent innate immune response is able to control low doses of virus infection. Surprisingly, in a significant proportion of these mice, HSV-1 appears to persist in the absence of antibodies and specific immunity.


2002 ◽  
Vol 76 (12) ◽  
pp. 6093-6103 ◽  
Author(s):  
Eishiro Mizukoshi ◽  
Michelina Nascimbeni ◽  
Joshua B. Blaustein ◽  
Kathleen Mihalik ◽  
Charles M. Rice ◽  
...  

ABSTRACT The chimpanzee is a critical animal model for studying cellular immune responses to infectious pathogens such as hepatitis B and C viruses, human immunodeficiency virus, and malaria. Several candidate vaccines and immunotherapies for these infections aim at the induction or enhancement of cellular immune responses against viral epitopes presented by common human major histocompatibility complex (MHC) alleles. To identify and characterize chimpanzee MHC class I molecules that are functionally related to human alleles, we sequenced 18 different Pan troglodytes (Patr) alleles of 14 chimpanzees, 2 of them previously unknown and 3 with only partially reported sequences. Comparative analysis of Patr binding pockets and binding assays with biotinylated peptides demonstrated a molecular homology between the binding grooves of individual Patr alleles and the common human alleles HLA-A1, -A2, -A3, and -B7. Using cytotoxic T cells isolated from the blood of hepatitis C virus (HCV)-infected chimpanzees, we then mapped the Patr restriction of these HCV peptides and demonstrated functional homology between the Patr-HLA orthologues in cytotoxicity and gamma interferon (IFN-γ) release assays. Based on these results, 21 HCV epitopes were selected to characterize the chimpanzees' cellular immune response to HCV. In each case, IFN-γ-producing T cells were detectable in the blood after but not prior to HCV infection and were specifically targeted against those HCV peptides predicted by Patr-HLA homology. This study demonstrates a close functional homology between individual Patr and HLA alleles and shows that HCV infection generates HCV peptides that are recognized by both chimpanzees and humans with Patr and HLA orthologues. These results are relevant for the design and evaluation of vaccines in chimpanzees that can now be selected according to the most frequent human MHC haplotypes.


2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Sophie J. Rhodes ◽  
Charlotte Sarfas ◽  
Gwenan M. Knight ◽  
Andrew White ◽  
Ansar A. Pathan ◽  
...  

ABSTRACT Macaques play a central role in the development of human tuberculosis (TB) vaccines. Immune and challenge responses differ across macaque and human subpopulations. We used novel immunostimulation/immunodynamic modeling methods in a proof-of-concept study to determine which macaque subpopulations best predicted immune responses in different human subpopulations. Data on gamma interferon (IFN-γ)-secreting CD4+ T cells over time after recent Mycobacterium bovis BCG vaccination were available for 55 humans and 81 macaques. Human population covariates were baseline BCG vaccination status, time since BCG vaccination, gender, and the monocyte/lymphocyte cell count ratio. The macaque population covariate was the colony of origin. A two-compartment mathematical model describing the dynamics of the IFN-γ T cell response after BCG vaccination was calibrated to these data using nonlinear mixed-effects methods. The model was calibrated to macaque and human data separately. The association between subpopulations and the BCG immune response in each species was assessed. The macaque subpopulations that best predicted immune responses in different human subpopulations were identified using Bayesian information criteria. We found that the macaque colony and the human baseline BCG status were significantly (P < 0.05) associated with the BCG-induced immune response. For humans who were BCG naïve at baseline, Indonesian cynomolgus macaques and Indian rhesus macaques best predicted the immune response. For humans who had already been BCG vaccinated at baseline, Mauritian cynomolgus macaques best predicted the immune response. This work suggests that the immune responses of different human populations may be best modeled by different macaque colonies, and it demonstrates the potential utility of immunostimulation/immunodynamic modeling to accelerate TB vaccine development.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1108-1108
Author(s):  
Christiane I.-U. Chen ◽  
Holden T. Maecker ◽  
Wesley H. Neal ◽  
Rhoda Falkow ◽  
Peter P. Lee

Abstract Imatinib mesylate, a selective inhibitor of the bcr/abl tyrosine kinase, has revolutionized the treatment of patients with chronic myelogenous leukemia (CML). Most CML patients in chronic phase achieve hematologic remission with imatinib, while some achieve cytogenetic remission. As imatinib is an oral agent with few side effects, it has rapidly become the first-line therapy for most CML patients. However, this therapy does not represent a cure, as patients who discontinue the drug invariably relapse. Furthermore, imatinib resistance is beginning to emerge in some patients. Hence, the need to find alternate, potentially curative, therapies for CML remains. To date, the only curative treatment for CML is allogeneic bone marrow or stem cell transplantation (ABMT). A major mechanism of the curative potential of ABMT is immunological, as evidenced by the poor clinical outcome with T cell-depleted ABMT, and the efficacy of donor lymphocyte infusions (DLI) upon relapse. We hypothesized that an effective anti-leukemia immune response may emerge in patients entering remission on imatinib which may contribute to its clinical effectiveness. If so, strategies to further enhance this anti-leukemia immune response may lead to a potential cure. To determine if CML patients in remission on imatinib develop anti-leukemia immune responses, blood and bone marrow samples from patients before and after treatment were collected and analyzed. Pre-treatment samples were utilized as sources of autologous leukemic cells to detect anti-leukemia immune responses in post-treatment samples in IFN-g ELISPOT assays. Pre-treatment samples alone, post-treatment samples alone, and when available, serial post-treatment samples mixed together served as controls. In 9 of 14 patients investigated, IFN-g release was detected in pre- and post-treatment samples together with a median response of 22 spots above background (range 10 – 56 dots, p&lt;0.01), whereas serial post-treatment samples together in 8 patients yielded results similar to background (median 5, range 5 – 20). In 6 of these patients in hematologic (or cytogenetic) remission, sufficient cells were available to allow additional analyses via intracellular staining for IFN-g, TNF-a, and IL-2 in autologous leukemia stimulated T cells (CD4 and CD8) and NK cells. In 4 of 6 patients, leukemia-reactive T cells were detected, most prominently in CD4+ T cells expressing TNF-a (1.4 – 37%), followed by IL-2 (0.3 – 12%) and IFN-g (0.1 – 4.6%). NK cells did not show significant expression of these cytokines upon stimulation with autologous leukemia cells. In pre-treatment and post-treatment samples alone, IL-2, TNF-a, and IFN-g expression was not detectable (0 – 0.5%). These results suggest that a significant portion of CML patients in remission with imatinib develop an anti-leukemia immune response, most notably in CD4+ T cells. Mechanisms by which imatinib treatment leads to anti-leukemia immune responses, and the molecular targets to which these cells are directed, will be further investigated. This knowledge will be useful in the development of immunotherapy strategies against CML as well as other leukemias, and raises the hope that immunotherapy may be combined with imatinib to eradicate residual leukemia cells for a durable cure of the disease. intracellular cytokine staining CD4+ T Cells CD8+ T Cells IL-2 IFN- γ TNF- α IL-2 IFN- γ TNF- α pt 1 0.3 0 0.8 0.1 0.1 0.5 pt 1 0.3 0.1 1.4 0.1 0.1 0.4 pt 2 2.6 0.8 10.3 2.2 2.1 6.1 pt 3 21 2 37 2.3 0.7 1.7 pt 4 12 4.6 19 6.3 1.8 5.8


2002 ◽  
Vol 70 (3) ◽  
pp. 1488-1500 ◽  
Author(s):  
Hilary E. Kennedy ◽  
Michael D. Welsh ◽  
David G. Bryson ◽  
Joseph P. Cassidy ◽  
Fiona I. Forster ◽  
...  

ABSTRACT It is accepted that cell-mediated immune responses predominate in mycobacterial infections. Many studies have shown that CD4+ T cells produce Th1 cytokines, such as gamma interferon (IFN-γ), in response to mycobacterial antigens and that the cytolytic activity of CD8+ cells toward infected macrophages is important. However, the extent and manner in which γδ T cells participate in this response remain unclear. In ruminants, γδ T cells comprise a major proportion of the peripheral blood mononuclear cell population. We have previously shown that WC1+ γδ T cells are involved early in Mycobacterium bovis infection of cattle, but their specific functions are not well understood. Here we describe an in vivo model of bovine tuberculosis in which the WC1+ γδ T cells were depleted from the peripheral circulation and respiratory tract, by infusion of WC1+-specific monoclonal antibody, prior to infection. While no effects on disease pathology were observed in this experiment, results indicate that WC1+ γδ T cells, which become significantly activated (CD25+) in the circulation of control calves from 21 days postinfection, may play a role in modulating the developing immune response to M. bovis. WC1+-depleted animals exhibited decreased antigen-specific lymphocyte proliferative response, an increased antigen-specific production of interleukin-4, and a lack of specific immunoglobulin G2 antibody. This suggests that WC1+ γδ TCR+ cells contribute, either directly or indirectly, toward the Th1 bias of the immune response in bovine tuberculosis—a hypothesis supported by the decreased innate production of IFN-γ, which was observed in WC1+-depleted calves.


2007 ◽  
Vol 75 (6) ◽  
pp. 3021-3026 ◽  
Author(s):  
Brandon T. Leader ◽  
Charmie Godornes ◽  
Wesley C. VanVoorhis ◽  
Sheila A. Lukehart

ABSTRACT The clearance of Treponema pallidum subsp. pallidum from early syphilis lesions involves infiltration of a large number of mononuclear cells and is characteristic of a cell-mediated immune response. In the present study, we sought to determine the relative abundance of different T-lymphocyte populations and Th1/Th2-associated cytokines present in testicular lesions following experimental infection with the Chicago strain of T. pallidum. Using flow cytometry, we examined the proportion of CD4+ and CD8+ T cells present throughout the progression and resolution of primary syphilis in the rabbit model. We related these findings to the results of real-time reverse transcription-PCR quantification of treponemal and cytokine mRNA levels. Treponemal mRNA levels reached peak values on day 18 postinfection, coincident with an initial peak in the level of T cells, which were primarily CD4+ T cells. T-cell levels increased again during resolution of orchitis, and there was an increased proportion of CD8+ T cells. The maximum gamma interferon (IFN-γ) and interleukin-10 (IL-10) mRNA levels were observed on days 11 and 18, respectively, while only negligible amounts of IL-4 and IL-2 were detected throughout the infection. In addition to showing the temporal relationship between treponemal burden and T-cell responses during lesion progression, our results also demonstrate that the composition of the T-cell population changes during lesion resolution. The presence of the mRNA for IFN-γ, but not IL-4, is consistent with cytokine expression in human syphilis and provides further support for the hypothesis that there is a Th1 predominance during the early immune response to T. pallidum.


Sign in / Sign up

Export Citation Format

Share Document