scholarly journals Vibrio cholerae OmpU and OmpT Porins Are Differentially Affected by Bile

2002 ◽  
Vol 70 (1) ◽  
pp. 121-126 ◽  
Author(s):  
Jamie A. Wibbenmeyer ◽  
Daniele Provenzano ◽  
Candice F. Landry ◽  
Karl E. Klose ◽  
Anne H. Delcour

ABSTRACT OmpT and OmpU are pore-forming proteins of the outer membrane of Vibrio cholerae, a pathogen that colonizes the intestine and produces cholera. Expression of the ompU and ompT genes is under the regulation of ToxR, a transmembrane transcriptional activator that also controls expression of virulence factors. It was recently shown that bile stimulates the ToxR-mediated transcription of ompU and that ompU-expressing strains are more resistant to bile and anionic detergents than ompT-expressing cells. In order to further understand the role of the OmpT and OmpU porins in the ability of V. cholerae to survive and colonize the host intestine, we examined the outer membrane permeability of cells expressing only ompU or only ompT or both genes in the absence and in the presence of bile. By comparing various strains in terms of the rate of degradation of the β-lactam antibiotic cephaloridine by the periplasmic β-lactamase, we found that the permeation of the antibiotic through the outer membrane of OmpU-containing cells was slower than the permeation in OmpT-containing cells. In addition, the OmpU-mediated outer membrane permeability was not affected by external bile, while the OmpT-mediated antibiotic flux was reduced by bile in a concentration-dependent manner. Our results confirm that OmpT and OmpU provide a passageway for hydrophilic solutes through the outer membrane and demonstrate that bile might interfere with this traffic in OmpT-producing cells by functionally inhibiting the OmpT pore. The insensitivity of OmpU to bile may be due to its small pore size and may provide an explanation for the resistance of OmpU-producing cells to bile in vivo.

mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Angela M. Mitchell ◽  
Tharan Srikumar ◽  
Thomas J. Silhavy

ABSTRACTGram-negative bacteria have an outer membrane (OM) impermeable to many toxic compounds that can be further strengthened during stress. InEnterobacteriaceae, the envelope contains enterobacterial common antigen (ECA), a carbohydrate-derived moiety conserved throughoutEnterobacteriaceae, the function of which is poorly understood. Previously, we identified several genes inEscherichia coliK-12 responsible for an RpoS-dependent decrease in envelope permeability during carbon-limited stationary phase. For one of these,yhdP, a gene of unknown function, deletion causes high levels of both vancomycin and detergent sensitivity, independent of growth phase. We isolated spontaneous suppressor mutants ofyhdPwith loss-of-function mutations in the ECA biosynthesis operon. ECA biosynthesis gene deletions suppressed envelope permeability fromyhdPdeletion independently of envelope stress responses and interactions with other biosynthesis pathways, demonstrating suppression is caused directly by removing ECA. Furthermore,yhdPdeletion changed cellular ECA levels andyhdPwas found to co-occur phylogenetically with the ECA biosynthesis operon. Cells make three forms of ECA: ECA lipopolysaccharide (LPS), an ECA chain linked to LPS core; ECA phosphatidylglycerol, a surface-exposed ECA chain linked to phosphatidylglycerol; and cyclic ECA, a cyclized soluble ECA molecule found in the periplasm. We determined that the suppression of envelope permeability withyhdPdeletion is caused specifically by the loss of cyclic ECA, despite lowered levels of this molecule found withyhdPdeletion. Furthermore, removing cyclic ECA from wild-type cells also caused changes to OM permeability. Our data demonstrate cyclic ECA acts to maintain the OM permeability barrier in a manner controlled by YhdP.IMPORTANCEEnterobacterial common antigen (ECA) is a surface antigen made by all members ofEnterobacteriaceae, including many clinically relevant genera (e.g.,Escherichia,Klebsiella,Yersinia). Although this surface-exposed molecule is conserved throughoutEnterobacteriaceae, very few functions have been ascribed to it. Here, we have determined that the periplasmic form of ECA, cyclic ECA, plays a role in maintaining the outer membrane permeability barrier. This activity is controlled by a protein of unknown function, YhdP, and deletion ofyhdPdamages the OM permeability barrier in a cyclic ECA-dependent manner, allowing harmful molecules such as antibiotics into the cell. This role in maintenance of the envelope permeability barrier is the first time a phenotype has been described for cyclic ECA. As the Gram-negative envelope is generally impermeable to antibiotics, understanding the mechanisms through which the barrier is maintained and antibiotics are excluded may lead to improved antibiotic delivery.


2013 ◽  
Vol 57 (8) ◽  
pp. 3941-3949 ◽  
Author(s):  
Wil H. F. Goessens ◽  
Akke K. van der Bij ◽  
Ria van Boxtel ◽  
Johann D. D. Pitout ◽  
Peter van Ulsen ◽  
...  

ABSTRACTA liver transplant patient was admitted with cholangitis, for which meropenem therapy was started. Initial cultures showed a carbapenem-susceptible (CS)Escherichia colistrain, but during admission, a carbapenem-resistant (CR)E. colistrain was isolated. Analysis of the outer membrane protein profiles showed that both CS and CRE. colilacked the porins OmpF and OmpC. Furthermore, PCR and sequence analysis revealed that both CS and CRE. colipossessedblaCTX-M-15andblaOXA-1. The CRE. colistrain additionally harboredblaCMY-2and demonstrated a >15-fold increase in β-lactamase activity against nitrocefin, but no hydrolysis of meropenem was detected. However, nitrocefin hydrolysis appeared strongly inhibited by meropenem. Furthermore, the CMY-2 enzyme demonstrated lower electrophoretic mobility after its incubation eitherin vitroorin vivowith meropenem, indicative of its covalent modification with meropenem. The presence of the acyl-enzyme complex was confirmed by mass spectrometry. By transformation of the CMY-2-encoding plasmid into variousE. colistrains, it was established that both porin deficiency and high-level expression of the enzyme were needed to confer meropenem resistance. In conclusion, carbapenem resistance emerged by a combination of elevated β-lactamase production and lack of porin expression. Due to the reduced outer membrane permeability, only small amounts of meropenem can enter the periplasm, where they are trapped but not degraded by the large amount of the β-lactamase. This study, therefore, provides evidence that the mechanism of “trapping” by CMY-2 β-lactamase plays a role in carbapenem resistance.


2009 ◽  
Vol 53 (10) ◽  
pp. 4345-4351 ◽  
Author(s):  
Kristen N. Schurek ◽  
Jorge L. M. Sampaio ◽  
Carlos R. V. Kiffer ◽  
Sumiko Sinto ◽  
Caio M. F. Mendes ◽  
...  

ABSTRACT During investigation of susceptibility testing methods for polymyxins, 24 multidrug-resistant clinical isolates of Pseudomonas aeruginosa were observed to have a distinct, reproducible phenotype in which skipped wells were observed during broth microdilution testing for polymyxin B. Possible mechanisms underlying this phenotype were investigated. The effects of various concentrations of polymyxin B on growth, the expression of resistance genes, and outer-membrane permeability were observed. Real-time PCR was performed to compare the expression, in response to selected concentrations of polymyxin B, of genes related to the PhoP-PhoQ and PmrA-PmrB two-component regulatory systems in polymyxin B-susceptible isolate PAO1, polymyxin B-resistant isolate 9BR, and two isolates (19BR and 213BR) exhibiting the skipped-well phenotype. 19BR and 213BR appeared to have similar basal levels of expression compared to that of PAO1 for phoQ, arnB, and PA4773 (from the pmrAB operon), and in contrast, 9BR had 52- and 280-fold higher expression of arnB and PA4773, respectively. The expression of arnB and PA4773 increased in response to polymyxin B in a concentration-dependent manner for 9BR but not for 19BR and 213BR. For these isolates, expression was significantly increased for arnB and PA4773, as well as phoQ, only upon exposure to 2 μg/ml polymyxin B but not at a lower concentration of 0.125 μg/ml. The sequencing of the pmrAB and phoPQ operons for all three isolates revealed a number of unique mutations compared to that for PAO1. 1-N-phenylnaphthylamine (NPN) was used to study the effect of preincubation with polymyxin B on the self-promoted uptake of polymyxin B across the outer membrane. The preincubation of cells with 2 μg/ml polymyxin B affected baseline membrane permeability in 19BR and 213BR and also resulted in a reduced rate of NPN uptake in these isolates and in PAO1 but not in 9BR. The results presented here suggest that the skipped-well isolates have the ability to adapt to specific concentrations of polymyxin B, inducing known polymyxin B resistance genes involved in generating alterations in the outer membrane.


2019 ◽  
Vol 26 (7) ◽  
pp. 494-501 ◽  
Author(s):  
Sameer Suresh Bhagyawant ◽  
Dakshita Tanaji Narvekar ◽  
Neha Gupta ◽  
Amita Bhadkaria ◽  
Ajay Kumar Gautam ◽  
...  

Background: Diabetes and hypertension are the major health concern and alleged to be of epidemic proportions. This has made it a numero uno subject at various levels of investigation. Glucosidase inhibitor provides the reasonable option in treatment of Diabetes Mellitus (DM) as it specifically targets post prandial hyperglycemia. The Angiotensin Converting Enzyme (ACE) plays an important role in hypertension. Therefore, inhibition of ACE in treatment of elevated blood pressure attracts special interest of the scientific community. Chickpea is a food legume and seeds contain carbohydrate binding protein- a lectin. Some of the biological properties of this lectin hitherto been elucidated. Methods: Purified by ion exchange chromatography, chickpea lectin was tested for its in vitro antioxidant, ACE-I inhibitory and anti-diabetic characteristic. Results: Lectin shows a characteristic improvement over the synthetic drugs like acarbose (oral anti-diabetic drug) and captopril (standard antihypertensive drug) when, their IC50 values are compared. Lectin significantly inhibited α-glucosidase and α-amylase in a concentration dependent manner with IC50 values of 85.41 ± 1.21 ҝg/ml and 65.05 ± 1.2 µg/ml compared to acarbose having IC50 70.20 ± 0.47 value of µg/ml and 50.52 ± 1.01 µg/ml respectively. β-Carotene bleaching assay showed antioxidant activity of lectin (72.3%) to be as active as Butylated Hydroxylanisole (BHA). In addition, lectin demonstrated inhibition against ACE-I with IC50 value of 57.43 ± 1.20 µg/ml compared to captopril. Conclusion: Lectin demonstrated its antioxidant character, ACE-I inhibition and significantly inhibitory for α-glucosidase and α-amylase seems to qualify as an anti-hyperglycemic therapeutic molecule. The biological effects of chickpea lectin display potential for reducing the parameters of medically debilitating conditions. These characteristics however needs to be established under in vivo systems too viz. animals through to humans.


2004 ◽  
Vol 48 (6) ◽  
pp. 2153-2158 ◽  
Author(s):  
Charléric Bornet ◽  
Nathalie Saint ◽  
Lilia Fetnaci ◽  
Myrielle Dupont ◽  
Anne Davin-Régli ◽  
...  

ABSTRACT In Enterobacter aerogenes, β-lactam resistance often involves a decrease in outer membrane permeability induced by modifications of porin synthesis. In ATCC 15038 strain, we observed a different pattern of porin production associated with a variable antibiotic susceptibility. We purified Omp35, which is expressed under conditions of low osmolality and analyzed its pore-forming properties in artificial membranes. This porin was found to be an OmpF-like protein with high conductance values. It showed a noticeably higher conductance compared to Omp36 and a specific location of WNYT residues in the L3 loop. The importance of the constriction region in the porin function suggests that this organization is involved in the level of susceptibility to negative large cephalosporins such as ceftriaxone by bacteria producing the Omp35 porin subfamily.


Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 123
Author(s):  
Natalia K. Kordulewska ◽  
Justyna Topa ◽  
Małgorzata Tańska ◽  
Anna Cieślińska ◽  
Ewa Fiedorowicz ◽  
...  

Lipopolysaccharydes (LPS) are responsible for the intestinal inflammatory reaction, as they may disrupt tight junctions and induce cytokines (CKs) secretion. Osthole has a wide spectrum of pharmacological effects, thus its anti-inflammatory potential in the LPS-treated Caco-2 cell line as well as in Caco-2/THP-1 and Caco-2/macrophages co-cultures was investigated. In brief, Caco-2 cells and co-cultures were incubated with LPS to induce an inflammatory reaction, after which osthole (150–450 ng/mL) was applied to reduce this effect. After 24 h, the level of secreted CKs and changes in gene expression were examined. LPS significantly increased the levels of IL-1β, -6, -8, and TNF-α, while osthole reduced this effect in a concentration-dependent manner, with the most significant decrease when a 450 ng/mL dose was applied (p < 0.0001). A similar trend was observed in changes in gene expression, with the significant osthole efficiency at a concentration of 450 ng/μL for IL1R1 and COX-2 (p < 0.01) and 300 ng/μL for NF-κB (p < 0.001). Osthole increased Caco-2 monolayer permeability, thus if it would ever be considered as a potential drug for minimizing intestinal inflammatory symptoms, its safety should be confirmed in extended in vitro and in vivo studies.


Blood ◽  
2001 ◽  
Vol 97 (9) ◽  
pp. 2648-2656 ◽  
Author(s):  
Juan A. Rosado ◽  
Else M. Y. Meijer ◽  
Karly Hamulyak ◽  
Irena Novakova ◽  
Johan W. M. Heemskerk ◽  
...  

Abstract Effects of the occupation of integrin αIIbβ3 by fibrinogen on Ca++signaling in fura-2–loaded human platelets were investigated. Adding fibrinogen to washed platelet suspensions inhibited increases in cytosolic [Ca++] concentrations ([Ca++]i) evoked by adenosine diphosphate (ADP) and thrombin in a concentration-dependent manner in the presence of external Ca++ but not in the absence of external Ca++ or in the presence of the nonselective cation channel blocker SKF96365, indicating selective inhibition of Ca++entry. Fibrinogen also inhibited store-mediated Ca++ entry (SMCE) activated after Ca++ store depletion using thapsigargin. The inhibitory effect of fibrinogen was reversed if fibrinogen binding to αIIbβ3 was blocked using RDGS or abciximab and was absent in platelets from patients homozygous for Glanzmann thrombasthenia. Fibrinogen was without effect on SMCE once activated. Activation of SMCE in platelets occurs through conformational coupling between the intracellular stores and the plasma membrane and requires remodeling of the actin cytoskeleton. Fibrinogen inhibited actin polymerization evoked by ADP or thapsigargin in control cells and in cells loaded with the Ca++ chelator dimethyl BAPTA. It also inhibited the translocation of the tyrosine kinase p60src to the cytoskeleton. These results indicate that the binding of fibrinogen to integrin αIIbβ3 inhibits the activation of SMCE in platelets by a mechanism that may involve modulation of the reorganization of the actin cytoskeleton and the cytoskeletal association of p60src. This action may be important in intrinsic negative feedback to prevent the further activation of platelets subjected to low-level stimuli in vivo.


2000 ◽  
Vol 182 (6) ◽  
pp. 1731-1738 ◽  
Author(s):  
Joan R. Butterton ◽  
Michael H. Choi ◽  
Paula I. Watnick ◽  
Patricia A. Carroll ◽  
Stephen B. Calderwood

ABSTRACT A 7.5-kbp fragment of chromosomal DNA downstream of theVibrio cholerae vibriobactin outer membrane receptor,viuA, and the vibriobactin utilization gene,viuB, was recovered from a Sau3A lambda library of O395 chromosomal DNA. By analogy with the genetic organization of the Escherichia coli enterobactin gene cluster, in which the enterobactin biosynthetic and transport genes lie adjacent to the enterobactin outer membrane receptor, fepA, and the utilization gene, fes, the cloned DNA was examined for the ability to restore siderophore synthesis to E. coli entmutants. Cross-feeding studies demonstrated that an E. coli entF mutant complemented with the cloned DNA regained the ability to synthesize enterobactin and to grow in low-iron medium. Sequence analysis of the cloned chromosomal DNA revealed an open reading frame downstream of viuB which encoded a deduced protein of greater than 2,158 amino acids, homologous to Yersinia sp. HMWP2, Vibrio anguillarum AngR, and E. coliEntF. A mutant with an in-frame deletion of this gene, namedvibF, was created with classical V. choleraestrain O395 by in vivo marker exchange. In cross-feeding studies, this mutant was unable to synthesize ferric vibriobactin but was able to utilize exogenous siderophore. Complementation of the mutant with a cloned vibF fragment restored vibriobactin synthesis to normal. The expression of the vibF promoter was found to be negatively regulated by iron at the transcriptional level, under the control of the V. cholerae fur gene. Expression ofvibF was not autoregulatory and neither affected nor was affected by the expression of irgA or viuA. The promoter of vibF was located by primer extension and was found to contain a dyad symmetric nucleotide sequence highly homologous to the E. coli Fur binding consensus sequence. A footprint of purified V. cholerae Fur on the vibFpromoter, overlapping the Fur binding consensus sequence, was observed using DNase I footprinting. The protein product of vibF is homologous to the multifunctional nonribosomal protein synthetases and is necessary for the biosynthesis of vibriobactin.


Author(s):  
Kartika Arum Wardani ◽  
Kholida Nur Aini ◽  
Heny Arwati ◽  
Willy Sandhika

Abstract Sequestration of Plasmodium berghei ANKA-infected erythrocytes occurs in BALB/c mice as characteristic of  Plasmodium falciparum infection in humans. Animals’ bile has been widely used for centuries in Traditional Chinese Medicine. Goat bile has been used in healing infectious and non-infectious diseases; however, no report on the use of goat bile against malaria infection and sequestration. The purpose of this study was to analyze the correlation between parasitemia and sequestration in the liver of P.berghei ANKA-infected BALB/c mice treated with goat bile. This research was an in vivo experimental study using the post-test control group design. The male BALB/c mice aged ± 6 weeks, body weight 20-25 g were used. The mice were divided into five groups where Group 1-3 were mice treated with goat bile 25%, 50%, and 100%, respectively. Group 4-5 were negative (sterile water) and positive controls (DHP). Parasitemia was observed daily from each mouse and the number of sequestered infected erythrocytes on the endothelium of sinusoids. The data were analyzed using t independent test. Antimalarial activity of goat bile was shown by the lower parasitemia in goat bile-treated mice compared with the negative control. The average number of sequestration was goat bile concentration-dependent manner. The higher the concentration, the lower the number of sequestration. Sequestration was correlated with parasitemia (p=0,0001). Sequestration of P.berghei ANKA-infected erythrocytes correlated with parasitemia, and was goat bile concentration-dependent manner. Keywords: Malaria, parasitemia, sequestration, goat bileCorrespondence: [email protected]


Sign in / Sign up

Export Citation Format

Share Document