scholarly journals A Novel Operon Encoding Formaldehyde Fixation: the Ribulose Monophosphate Pathway in the Gram-Positive Facultative Methylotrophic Bacterium Mycobacterium gastri MB19

2000 ◽  
Vol 182 (4) ◽  
pp. 944-948 ◽  
Author(s):  
Ryoji Mitsui ◽  
Yasuyoshi Sakai ◽  
Hisashi Yasueda ◽  
Nobuo Kato

ABSTRACT A 4.2-kb PstI fragment harboring the gene cluster of the ribulose monophosphate (RuMP) pathway for formaldehyde fixation was identified in the chromosome of a gram-positive, facultative methylotroph, Mycobacterium gastri MB19, by using the coding region of 3-hexulose-6-phosphate synthase (HPS) as the hybridization probe. The PstI fragment contained three complete open reading frames (ORFs) which encoded from the 5′ end, a DNA-binding regulatory protein (rmpR), 6-phospho-3-hexuloisomerase (PHI; rmpB), and HPS (rmpA). Sequence analysis suggested that rmpAand rmpB constitute an operon, and Northern blot analysis of RNA extracted from bacteria grown under various conditions suggested that the expression of the two genes is similarly regulated at the transcriptional level. A similarity search revealed that the proteins encoded by rmpA and rmpB in M. gastri MB19 show high similarity to the unidentified proteins of nonmethylotrophic prokaryotes, including bacteria and anaerobic archaea. The clusters in the phylogenetic tree of the HPS protein ofM. gastri MB19 and those in the phylogenetic tree of the PHI protein were nearly identical, which implies that these two formaldehyde-fixing genes evolved as a pair. These findings give new insight into the acquisition of the formaldehyde fixation pathway during the evolution of diverse microorganisms.

Microbiology ◽  
2003 ◽  
Vol 149 (11) ◽  
pp. 3073-3081 ◽  
Author(s):  
Gerardo Medina ◽  
Katy Juárez ◽  
Rafael Díaz ◽  
Gloria Soberón-Chávez

The Pseudomonas aeruginosa rhlR gene encodes the transcriptional regulator RhlR which has a central role in the quorum-sensing response. Different gene products involved in bacterial pathogenesis are regulated at the transcriptional level by two quorum-sensing response systems, Las and Rhl. The expression of rhlR has been reported to be under the control of the Las system, but its transcriptional regulation has not been studied in detail. Here, the rhlR promoter region has been characterized and shown to present four different transcription start sites, two of which are included in the upstream gene (rhlB) coding region. It was found that rhlR expression is not only dependent on LasR but also on different regulatory proteins such as Vfr and RhlR itself, and also on the alternative sigma factor σ 54. It is reported that rhlR expression is partially LasR-independent under certain culture conditions and is strongly influenced by environmental factors.


2002 ◽  
Vol 184 (12) ◽  
pp. 3232-3241 ◽  
Author(s):  
Lars Beier ◽  
Per Nygaard ◽  
Hanne Jarmer ◽  
Hans H. Saxild

ABSTRACT The PucR protein of Bacillus subtilis has previously been suggested to regulate the expression of 15 genes, pucABCDE, pucFG, pucH, pucI, pucJKLM, pucR, and gde, all of which encode proteins involved in purine catabolism. When cells are grown under nitrogen-limiting conditions, the expression of these genes is induced and intermediary compounds of the purine catabolic pathway affect this expression. By using pucR deletion mutants, we have found that PucR induces the expression of pucFG, pucH, pucI, pucJKLM, and gde while it represses the expression of pucR and pucABCDE. Deletions in the promoters of the five induced operons and genes combined with bioinformatic analysis suggested a conserved upstream activating sequence, 5′-WWWCNTTGGTTAA-3′, now named the PucR box. Potential PucR boxes overlapping the −35 and −10 regions of the pucABCDE promoter and located downstream of the pucR transcription start point were also found. The positions of these PucR boxes are consistent with PucR acting as a negative regulator of pucABCDE and pucR expression. Site-directed mutations in the PucR box upstream of pucH and pucI identified positions that are essential for the induction of pucH and pucI expression, respectively. Mutants with decreased pucH or increased pucR expression obtained from a library of clones containing random mutations in the pucH-to-pucR intercistronic region all contained mutations in or near the PucR box. The induction of pucR expression under nitrogen-limiting conditions was found to be mediated by the global nitrogen-regulatory protein TnrA. In other gram-positive bacteria, we have found open reading frames that encode proteins similar to PucR located next to other open reading frames encoding proteins with similarity to purine catabolic enzymes. Hence, the PucR homologues are likely to exert the same function in other gram-positive bacteria as PucR does in B. subtilis.


Genetics ◽  
1996 ◽  
Vol 143 (1) ◽  
pp. 417-426
Author(s):  
Richard W Beeman ◽  
M Scott Thomson ◽  
John M Clark ◽  
Marco A DeCamillis ◽  
Susan J Brown ◽  
...  

Abstract A recently isolated, lethal mutation of the homeotic Abdominal gene of the red flour beetle Tribolium castaneum is associated with an insertion of a novel retrotransposon into an intron. Sequence analysis indicates that this retrotransposon, named Woot, is a member of the gypsy family of mobile elements. Most strains of T. castaneum appear to harbor ~25-35 copies of Woot per genome. Woot is composed of long terminal repeats of unprecedented length (3.6 kb each), flanking an internal coding region 5.0 kb in length. For most copies of Woot, the internal region includes two open reading frames (ORFs) that correspond to the gag and pol genes of previously described retrotransposons and retroviruses. The copy of Woot inserted into Abdominal bears an apparent single frameshift mutation that separates the normal second ORF into two. Woot does not appear to generate infectious virions by the criterion that no envelop gene is discernible. The association of Woot with a recent mutation suggests that this retroelement is currently transpositionally active in at least some strains.


2008 ◽  
Vol 190 (18) ◽  
pp. 6111-6118 ◽  
Author(s):  
P. Rousseau ◽  
C. Loot ◽  
C. Turlan ◽  
S. Nolivos ◽  
M. Chandler

ABSTRACT IS911 is a bacterial insertion sequence composed of two consecutive overlapping open reading frames (ORFs [orfA and orfB]) encoding the transposase (OrfAB) as well as a regulatory protein (OrfA). These ORFs are bordered by terminal left and right inverted repeats (IRL and IRR, respectively) with several differences in nucleotide sequence. IS911 transposition is asymmetric: each end is cleaved on one strand to generate a free 3′-OH, which is then used as the nucleophile in attacking the opposite insertion sequence (IS) end to generate a free IS circle. This will be inserted into a new target site. We show here that the ends exhibit functional differences which, in vivo, may favor the use of one compared to the other during transposition. Electromobility shift assays showed that a truncated form of the transposase [OrfAB(1-149)] exhibits higher affinity for IRR than for IRL. While there was no detectable difference in IR activities during the early steps of transposition, IRR was more efficient during the final insertion steps. We show here that the differential activities between the two IRs correlate with the different affinities of OrfAB(1-149) for the IRs during assembly of the nucleoprotein complexes leading to transposition. We conclude that the two inverted repeats are not equivalent during IS911 transposition and that this asymmetry may intervene to determine the ordered assembly of the different protein-DNA complexes involved in the reaction.


Reproduction ◽  
2017 ◽  
Vol 154 (6) ◽  
pp. 723-733 ◽  
Author(s):  
Huijuan Zhang ◽  
Guishuan Wang ◽  
Lin Liu ◽  
Xiaolin Liang ◽  
Yu Lin ◽  
...  

The chromatoid body (CB) is a specific cloud-like structure in the cytoplasm of haploid spermatids. Recent findings indicate that CB is identified as a male germ cell-specific RNA storage and processing center, but its function has remained elusive for decades. In somatic cells, KH-type splicing regulatory protein (KSRP) is involved in regulating gene expression and maturation of select microRNAs (miRNAs). However, the function of KSRP in spermatogenesis remains unclear. In this study, we showed that KSRP partly localizes in CB, as a component of CB. KSRP interacts with proteins (mouse VASA homolog (MVH), polyadenylate-binding protein 1 (PABP1) and polyadenylate-binding protein 2 (PABP2)), mRNAs (Tnp2 and Odf1) and microRNAs (microRNA-182) in mouse CB. Moreover, KSRP may regulate the integrity of CB via DDX5-miRNA-182 pathway. In addition, we found abnormal expressions of CB component in testes of Ksrp-knockout mice and of patients with hypospermatogenesis. Thus, our results provide mechanistic insight into the role of KSRP in spermatogenesis.


2018 ◽  
Vol 93 (5) ◽  
Author(s):  
Oluwapelumi O. Adeyemi ◽  
Lee Sherry ◽  
Joseph C. Ward ◽  
Danielle M. Pierce ◽  
Morgan R. Herod ◽  
...  

ABSTRACTVirus capsid proteins must perform a number of roles. These include self-assembly and maintaining stability under challenging environmental conditions, while retaining the conformational flexibility necessary to uncoat and deliver the viral genome into a host cell. Fulfilling these roles could place conflicting constraints on the innate abilities encoded within the protein sequences. In a previous study, we identified a number of mutations within the capsid-coding sequence of poliovirus (PV) that were established in the population during selection for greater thermostability by sequential treatment at progressively higher temperatures. Two mutations in the VP1 protein acquired at an early stage were maintained throughout this selection procedure. One of these mutations prevented virion assembly when introduced into a wild-type (wt) infectious clone. Here we show, by sequencing beyond the capsid-coding region of the heat-selected virions, that two mutations had arisen within the coding region of the 2A protease. Both mutations were maintained throughout the selection process. Introduction of these mutations into a wt infectious clone by site-directed mutagenesis considerably reduced replication. However, they permitted a low level of assembly of infectious virions containing the otherwise lethal mutation in VP1. The 2Apromutations were further shown to slow the kinetics of viral polyprotein processing, and we suggest that this delay improves the correct folding of the mutant capsid precursor protein to permit virion assembly.IMPORTANCERNA viruses, including poliovirus, evolve rapidly due to the error-prone nature of the polymerase enzymes involved in genome replication. Fixation of advantageous mutations may require the acquisition of complementary mutations which can act in concert to achieve a favorable phenotype. This study highlights a compensatory role of a nonstructural regulatory protein, 2Apro, for an otherwise lethal mutation of the structural VP1 protein to facilitate increased thermal resistance. Studying how viruses respond to selection pressures is important for understanding mechanisms which underpin emergence of resistance and could be applied to the future development of antiviral agents and vaccines.


1999 ◽  
Vol 181 (8) ◽  
pp. 2485-2491 ◽  
Author(s):  
B. H. A. Kremer ◽  
J. J. E. Bijlsma ◽  
J. G. Kusters ◽  
J. de Graaff ◽  
T. J. M. van Steenbergen

ABSTRACT Although we are currently unaware of its biological function, the fibril-like surface structure is a prominent characteristic of the rough (Rg) genotype of the gram-positive periodontal pathogenPeptostreptococcus micros. The smooth (Sm) type of this species as well as the smooth variant of the Rg type (RgSm) lack these structures on their surface. A fibril-specific serum, as determined by immunogold electron microscopy, was obtained through adsorption of a rabbit anti-Rg type serum with excess bacteria of the RgSm type. This serum recognized a 42-kDa protein, which was subjected to N-terminal sequencing. Both clones of a λTriplEx expression library that were selected by immunoscreening with the fibril-specific serum contained an open reading frame, designatedfibA, encoding a 393-amino-acid protein (FibA). The 15-residue N-terminal amino acid sequence of the 42-kDa antigen was present at positions 39 to 53 in FibA; from this we conclude that the mature FibA protein contains 355 amino acids, resulting in a predicted molecular mass of 41,368 Da. The putative 38-residue signal sequence of FibA strongly resembles other gram-positive secretion signal sequences. The C termini of FibA and two open reading frames directly upstream and downstream of fibA exhibited significant sequence homology to the C termini of a group of secreted and surface-located proteins of other gram-positive cocci that are all presumably involved in anchoring of the protein to carbohydrate structures. We conclude that FibA is a secreted and surface-located protein and as such is part of the fibril-like structures.


Genetics ◽  
1991 ◽  
Vol 129 (3) ◽  
pp. 873-884 ◽  
Author(s):  
Y Ogihara ◽  
T Terachi ◽  
T Sasakuma

Abstract The nucleotide divergence of chloroplast DNAs around the hot spot region related to length mutation in Triticum (wheat) and Aegilops was analyzed. DNA sequences (ca. 4.5 kbp) of three chloroplast genome types of wheat complex were compared with one another and with the corresponding region of other grasses. The sequences region contained rbcL and psaI, two open reading frames, and a pseudogene, rpl23' (pseudogene for ribosomal protein L23) disrupted by AT-rich intergic spacer regions. The evolution of these genes in the closely related wheat complex is characterized by nonbiased nucleotide substitutions in terms of being synonymous/nonsynonymous, having A-T pressure transitions over transversions, and frequent changes at the third codon position, in contrast with the gene evolution among more distant plant groups where biased nucleotide substitutions have frequently occurred. The sequences of these genes had diverged almost in proportion to taxonomic distance. The sequence of the pseudogene rpl23' changed approximately two times faster than that of the coding region. Sequence comparison between the pseudogene and its protein-coding counterpart revealed different degrees of nucleotide homology in wheat, rice and maize, suggesting that the transposition timing of the pseudogene differed and/or that different rates of gene conversion operated on the pseudogene in the cpDNA of the three plant groups in Gramineae. The intergenic spacer regions diverged approximately ten times faster than the genes. The divergence of wheat from barley, and that from rice are estimated based on the nucleotide similarity to be 1.5, 10 and 40 million years, respectively.


Genetics ◽  
1999 ◽  
Vol 152 (4) ◽  
pp. 1307-1314
Author(s):  
Arnulf Kletzin ◽  
Angelika Lieke ◽  
Tim Urich ◽  
Robert L Charlebois ◽  
Christoph W Sensen

Abstract The 7598-bp plasmid pDL10 from the extremely thermophilic, acidophilic, and chemolithoautotrophic Archaeon Acidianus ambivalens was sequenced. It contains 10 open reading frames (ORFs) organized in five putative operons. The deduced amino acid sequence of the largest ORF (909 aa) showed similarity to bacterial Rep proteins known from phages and plasmids with rolling-circle (RC) replication. From the comparison of the amino acid sequences, a novel family of RC Rep proteins was defined. The pDL10 Rep protein shared 45-80% identical residues with homologous protein genes encoded by the Sulfolobus islandicus plasmids pRN1 and pRN2. Two DNA regions capable of forming extended stem-loop structures were also conserved in the three plasmids (48-69% sequence identity). In addition, a putative plasmid regulatory protein gene (plrA) was found, which was conserved among the three plasmids and the conjugative Sulfolobus plasmid pNOB8. A homolog of this gene was also found in the chromosome of S. solfataricus. Single-stranded DNA of both pDL10 strands was detected with a mung bean nuclease protection assay using PCR detection of protected fragments, giving additional evidence for an RC mechanism of replication.


2018 ◽  
Vol 15 (1) ◽  
pp. 37-42
Author(s):  
Baghdad Science Journal

This study aims at detecting the differences in genotyping of coding region fusA gene in clinical isolates of Acinetobacter baumannii from Baghdad, Iraq. Collected two hundred clinical samples (50 samples from urine, 50 samples from wound, 50 samples from sputum and 50 samples from otitis infections). Laboratory diagnosis for bacterial isolates carried out by some biochemical tests and confirmed by using VITEK- 2 compact system. The results appeared that twenty isolates of Acinetobacter baumannii in all these samples. Genotyping study was performed of coding region fusA gene of the extracted genome of all bacterial isolates and used specific primers in achieved amplification process of this target gene. DNA sequencing of this gene and alignment of sequencing in NCBI was achieved and drew phylogenetic tree by using Geneious 9 software among locally isolates alone and then among locally isolates and high identity global isolates in GenBank. The results in phylogenetic tree of fusA gene in locally isolates showed 4 groups of isolates included more than one source of isolation. The results in phylogenetic tree of the locally and global isolates showed that are four different groups and each group included some locally isolates and global isolates except group A (AE_22, AE_26) and group E (AE_35, AE_32, AE_33) that not identity with global isolates. The nucleotides sequence of fusA gene from localized isolate (AE_35) was registered in national GenBank under accession number (LOCUS KY818057) and protein ID "ARV90995.1.


Sign in / Sign up

Export Citation Format

Share Document