scholarly journals Breaching Pathogeographic Barriers by the Bat White-Nose Fungus

mBio ◽  
2018 ◽  
Vol 9 (3) ◽  
Author(s):  
Johanna Rhodes ◽  
Matthew C. Fisher

ABSTRACT Bat white-nose syndrome has become associated with unparalleled mortality in bat species across the United States since 2006. In a recent article, Drees and colleagues (mBio 8:e01941-17, 2017, https://doi.org/10.1128/mBio.01941-17) utilized both whole-genome sequencing and microsatellite data to explore the origin and spread of the causative agent of bat white-nose syndrome, Pseudogymnoascus destructans . The research by Drees et al. supports the hypothesis that P. destructans was introduced into North America from Europe, with molecular dating suggesting a divergence from European isolates approximately 100 years ago. The approaches described in this study are an important contribution toward pinpointing the origins of this infection and underscore the need for more rigorous international biosecurity in order to stem the tide of emerging fungal pathogens.

2018 ◽  
Vol 84 (16) ◽  
Author(s):  
Adrian Forsythe ◽  
Victoria Giglio ◽  
Jonathan Asa ◽  
Jianping Xu

ABSTRACTWhite-nose syndrome (WNS) is an ongoing epizootic affecting multiple species of North American bats, caused by epidermal infections of the psychrophilic filamentous fungusPseudogymnoascus destructans. Since its introduction from Europe, WNS has spread rapidly across eastern North America and resulted in high mortality rates in bats. At present, the mechanisms behind its spread and the extent of its adaptation to different geographic and ecological niches remain unknown. The objective of this study was to examine the geographic patterns of phenotypic variation and the potential evidence for adaptation among strains representing broad geographic locations in eastern North America. The morphological features of these strains were evaluated on artificial medium, and the viability of asexual arthroconidia of representative strains was investigated after storage at high (23°C), moderate (14°C), and low (4°C) temperatures at different lengths of time. Our analyses identified evidence for a geographic pattern of colony morphology changes among the clonal descendants of the fungus, with trait values correlated with increased distance from the epicenter of WNS. Our genomic comparisons of three representative isolates revealed novel genetic polymorphisms and suggested potential candidate mutations that might be related to some of the phenotypic changes. These results show that even though this pathogen arrived in North America only recently and reproduces asexually, there has been substantial evolution and phenotypic diversification during its rapid clonal expansion.IMPORTANCEThe causal agent of white-nose syndrome in bats isPseudogymnoascus destructans, a filamentous fungus recently introduced from its native range in Europe. Infections caused byP. destructanshave progressed across the eastern parts of Canada and the United States over the last 10 years. It is not clear how the disease is spread, as the pathogen is unable to grow above 23°C and ambient temperature can act as a barrier when hosts disperse. Here, we explore the patterns of phenotypic diversity and the germination of the fungal asexual spores, arthroconidia, from strains across a sizeable area of the epizootic range. Our analyses revealed evidence of adaptation along geographic gradients during its expansion. The results have implications for understanding the diversification ofP. destructansand the limits of WNS spread in North America. Given the rapidly expanding distribution of WNS, a detailed understanding of the genetic bases for phenotypic variations in growth, reproduction, and dispersal ofP. destructansis urgently needed to help control this disease.


mSphere ◽  
2018 ◽  
Vol 3 (4) ◽  
Author(s):  
Michelle L. Verant ◽  
Carol U. Meteyer ◽  
Benjamin Stading ◽  
David S. Blehert

ABSTRACTWhite-nose syndrome (WNS) is causing significant declines in populations of North American hibernating bats, and recent western and southern expansions of the disease have placed additional species at risk. Understanding differences in species susceptibility and identifying management actions to reduce mortality of bats from WNS are top research priorities. However, the use of wild-caught susceptible bats, such asMyotis lucifugus, as model species for WNS research is problematic and places additional pressure on remnant populations. We investigated the feasibility of usingTadarida brasiliensis, a highly abundant species of bat that tolerates captivity, as the basis for an experimental animal model for WNS. Using methods previously established to confirm the etiology of WNS inM. lucifugus, we experimentally infected 11T. brasiliensisbats withPseudogymnoascus destructansin the laboratory under conditions that induced hibernation. We detectedP. destructanson all 11 experimentally infected bats, 7 of which exhibited localized proliferation of hyphae within the epidermis, dermis, and subcutaneous tissue, similar to invasive cutaneous ascomycosis observed inM. lucifugusbats with WNS. However, the distribution of lesions across wing membranes ofT. brasiliensisbats was limited, and only one discrete “cupping erosion,” diagnostic for WNS, was identified. Thus, the rarity of lesions definitive for WNS suggests thatT. brasiliensisdoes not likely represent an appropriate model for studying the pathophysiology of this disease. Nonetheless, the results of this study prompt questions concerning the potential for free-ranging, migratoryT. brasiliensisbats to become infected withP. destructansand move the fungal pathogen between roost sites used by species susceptible to WNS.IMPORTANCEWhite-nose syndrome (WNS) is a fungal disease that is causing severe declines of bat populations in North America. Identifying ways to reduce the impacts of this disease is a priority but is inhibited by the lack of an experimental animal model that does not require the use of wild-caught bat species already impacted by WNS. We tested whetherTadarida brasiliensis, one of the most abundant species of bats in the Americas, could serve as a suitable animal model for WNS research. WhileT. brasiliensisbats were susceptible to experimental infection with the fungus under conditions that induced hibernation, the species exhibited limited pathology diagnostic for WNS. These results indicate thatT. brasiliensisis not likely a suitable experimental model for WNS research. However, the recovery of viable WNS-causing fungus from experimentally infected bats indicates a potential for this species to contribute to the spread of the pathogen where it coexists with other species of bats affected by WNS.


2019 ◽  
Vol 63 (6) ◽  
Author(s):  
Nenad Macesic ◽  
Sabrina Khan ◽  
Marla J. Giddins ◽  
Daniel E. Freedberg ◽  
Susan Whittier ◽  
...  

ABSTRACT mcr-1, a plasmid-associated gene for colistin resistance, was first described in China in 2015, but its spread in the United States is unknown. We report detection of mcr-1-carrying Escherichia coli ST117 in a cluster of three liver transplant recipients.


mSphere ◽  
2018 ◽  
Vol 3 (3) ◽  
Author(s):  
Jolene R. Bowers ◽  
Elizabeth M. Driebe ◽  
Valerie Albrecht ◽  
Linda K. McDougal ◽  
Mitchell Granade ◽  
...  

ABSTRACTStrains ofStaphylococcus aureusin clonal complex 8 (CC8), including USA300, USA500, and the Iberian clone, are prevalent pathogens in the United States, both inside and outside health care settings. Methods for typing CC8 strains are becoming obsolete as the strains evolve and diversify, and whole-genome sequencing has shown that some strain types fall into multiple sublineages within CC8. In this study, we attempt to clarify the strain nomenclature of CC8, classifying the major strain types based on whole-genome sequence phylogenetics using both methicillin-resistantS. aureus(MRSA) and methicillin-susceptibleS. aureus(MSSA) genomes. We show that isolates of the Archaic and Iberian clones from decades ago make up the most basal clade of the main CC8 lineages and that at least one successful lineage of CC8, made up mostly of MSSA, diverged before the other well-known strain types USA500 and USA300. We also show that the USA500 type includes two clades separated by the previously described “Canadian epidemic MRSA” strain CMRSA9, that one clade containing USA500 also contains the USA300 clade, and that the USA300-0114 strain type is not a monophyletic group. Additionally, we present a rapid, simple CC8 strain-typing scheme using real-time PCR assays that target single nucleotide polymorphisms (SNPs) derived from our CC8 phylogeny and show the significant benefit of using more stable genomic markers based on evolutionary lineages over traditionalS. aureustyping techniques. This more accurate and accessibleS. aureustyping system may improve surveillance and better inform the epidemiology of this very important pathogen.IMPORTANCEStaphylococcus aureusis a major human pathogen worldwide in both community and health care settings. Surveillance forS. aureusstrains is important to our understanding of their spread and to informing infection prevention and control. Confusion surrounding the strain nomenclature of one of the most prevalent lineages ofS. aureus, clonal complex 8 (CC8), and the imprecision of current tools for typingS. aureusmake surveillance and source tracing difficult and sometimes misleading. In this study, we clarify the CC8 strain designations and propose a new typing scheme for CC8 isolates that is rapid and easy to use. This typing scheme is based on relatively stable genomic markers, and we demonstrate its superiority over traditional typing techniques. This scheme has the potential to greatly improve epidemiological investigations ofS. aureus.


2020 ◽  
Vol 86 (6) ◽  
Author(s):  
Mukund Madhav ◽  
Rhys Parry ◽  
Jess A. T. Morgan ◽  
Peter James ◽  
Sassan Asgari

ABSTRACT The horn fly, Haematobia irritans irritans, is a hematophagous parasite of livestock distributed throughout Europe, Africa, Asia, and the Americas. Welfare losses on livestock due to horn fly infestation are estimated to cost between $1 billion and $2.5 billion (U.S. dollars) annually in North America and Brazil. The endosymbiotic bacterium Wolbachia pipientis is a maternally inherited manipulator of reproductive biology in arthropods and naturally infects laboratory colonies of horn flies from Kerrville, TX, and Alberta, Canada, but it has also been identified in wild-caught samples from Canada, the United States, Mexico, and Hungary. Reassembly of PacBio long-read and Illumina genomic DNA libraries from the Kerrville H. i. irritans genome project allowed for a complete and circularized 1.3-Mb Wolbachia genome (wIrr). Annotation of wIrr yielded 1,249 coding genes, 34 tRNAs, 3 rRNAs, and 5 prophage regions. Comparative genomics and whole-genome Bayesian evolutionary analysis of wIrr compared to published Wolbachia genomes suggested that wIrr is most closely related to and diverged from Wolbachia supergroup A strains known to infect Drosophila spp. Whole-genome synteny analyses between wIrr and closely related genomes indicated that wIrr has undergone significant genome rearrangements while maintaining high nucleotide identity. Comparative analysis of the cytoplasmic incompatibility (CI) genes of wIrr suggested two phylogenetically distinct CI loci and acquisition of another cifB homolog from phylogenetically distant supergroup A Wolbachia strains, suggesting horizontal acquisition of these loci. The wIrr genome provides a resource for future examination of the impact Wolbachia may have in both biocontrol and potential insecticide resistance of horn flies. IMPORTANCE Horn flies, Haematobia irritans irritans, are obligate hematophagous parasites of cattle having significant effects on production and animal welfare. Control of horn flies mainly relies on the use of insecticides, but issues with resistance have increased interest in development of alternative means of control. Wolbachia pipientis is an endosymbiont bacterium known to have a range of effects on host reproduction, such as induction of cytoplasmic incompatibility, feminization, male killing, and also impacts vector transmission. These characteristics of Wolbachia have been exploited in biological control approaches for a range of insect pests. Here we report the assembly and annotation of the circular genome of the Wolbachia strain of the Kerrville, TX, horn fly (wIrr). Annotation of wIrr suggests its unique features, including the horizontal acquisition of additional transcriptionally active cytoplasmic incompatibility loci. This study provides the foundation for future studies of Wolbachia-induced biological effects for control of horn flies.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 665 ◽  
Author(s):  
Vishnu Chaturvedi ◽  
Holland DeFiglio ◽  
Sudha Chaturvedi

Background: Pseudogymnoascus destructans, a psychrophile, causes bat white-nose syndrome (WNS). Pseudogymnoascus pannorum, a closely related fungus, causes human and canine diseases rarely. Both pathogens were reported from the same mines and caves in the United States, but only P. destructans caused WNS. Earlier genome comparisons revealed that P. pannorum contained more deduced proteins with ascribed enzymatic functions than P. destructans. Methods: We performed metabolic profiling with Biolog PM microarray plates to confirm in silico gene predictions. Results: P. pannorum utilized 78 of 190 carbon sources (41%), and 41 of 91 nitrogen compounds (43%) tested. P. destructans used 23 carbon compounds (12%) and 23 nitrogen compounds (24%). P. destructans exhibited more robust growth on the phosphorous compounds and nutrient supplements (83% and 15%, respectively) compared to P. pannorum (27% and 1%, respectively.). P. pannorum exhibited higher tolerance to osmolytes, pH extremes, and a variety of chemical compounds than P. destructans. Conclusions: An abundance of carbohydrate degradation pathways combined with robust stress tolerance provided clues for the soil distribution of P. pannorum. The limited metabolic profile of P. destructans was compatible with in silico predictions of far fewer proteins and enzymes. P. destructans ability to catabolize diverse phosphorous and nutrient supplements might be critical in the colonization and invasion of bat tissues. The present study of 1,047 different metabolic activities provides a framework for future gene-function investigations of the unique biology of the psychrophilic fungi.


2017 ◽  
Vol 5 (21) ◽  
Author(s):  
Jessica L. Halpin ◽  
Karen Hill ◽  
Shannon L. Johnson ◽  
David Carlton Bruce ◽  
T. Brian Shirey ◽  
...  

ABSTRACT Clostridium botulinum secretes a potent neurotoxin that causes devastating effects when ingested, including paralysis and death if not treated. In the United States, some clinically significant strains produce toxin type A while also harboring a silent B gene. These are the first two closed genome sequences published for this subset.


2016 ◽  
Vol 60 (9) ◽  
pp. 5515-5520 ◽  
Author(s):  
Patrick F. McDermott ◽  
Gregory H. Tyson ◽  
Claudine Kabera ◽  
Yuansha Chen ◽  
Cong Li ◽  
...  

ABSTRACTLaboratory-basedin vitroantimicrobial susceptibility testing is the foundation for guiding anti-infective therapy and monitoring antimicrobial resistance trends. We used whole-genome sequencing (WGS) technology to identify known antimicrobial resistance determinants among strains of nontyphoidalSalmonellaand correlated these with susceptibility phenotypes to evaluate the utility of WGS for antimicrobial resistance surveillance. Six hundred fortySalmonellaof 43 different serotypes were selected from among retail meat and human clinical isolates that were tested for susceptibility to 14 antimicrobials using broth microdilution. The MIC for each drug was used to categorize isolates as susceptible or resistant based on Clinical and Laboratory Standards Institute clinical breakpoints or National Antimicrobial Resistance Monitoring System (NARMS) consensus interpretive criteria. Each isolate was subjected to whole-genome shotgun sequencing, and resistance genes were identified from assembled sequences. A total of 65 unique resistance genes, plus mutations in two structural resistance loci, were identified. There were more unique resistance genes (n =59) in the 104 human isolates than in the 536 retail meat isolates (n =36). Overall, resistance genotypes and phenotypes correlated in 99.0% of cases. Correlations approached 100% for most classes of antibiotics but were lower for aminoglycosides and beta-lactams. We report the first finding of extended-spectrum β-lactamases (ESBLs) (blaCTX-M1andblaSHV2a) in retail meat isolates ofSalmonellain the United States. Whole-genome sequencing is an effective tool for predicting antibiotic resistance in nontyphoidalSalmonella, although the use of more appropriate surveillance breakpoints and increased knowledge of new resistance alleles will further improve correlations.


2021 ◽  
Vol 10 (36) ◽  
Author(s):  
Evan P. Brenner ◽  
Syeda A. Hadi ◽  
Beth Harris ◽  
Suelee Robbe-Austerman ◽  
Srinand Sreevatsan

Members of the Mycobacterium tuberculosis complex cause tuberculosis, infamous for enormous impacts on human health. As zoonoses, they also threaten endangered species like African/Asian elephants. We report the whole-genome sequences of Mycobacterium tuberculosis biovars tuberculosis and bovis from two zoo elephants in the United States.


2017 ◽  
Vol 5 (29) ◽  
Author(s):  
Yuki Teru ◽  
Jun-ichi Hikima ◽  
Tomoya Kono ◽  
Masahiro Sakai ◽  
Tomokazu Takano ◽  
...  

ABSTRACT Photobacterium damselae subsp. piscicida is a causative bacterium of fish pasteurellosis, which has caused serious economic damage to aquaculture farms worldwide. Here, the whole-genome sequence of P. damselae subsp. piscicida 91-197, isolated in the United States, suggests that this genome consists of two chromosomes and two plasmids.


Sign in / Sign up

Export Citation Format

Share Document