scholarly journals The Arginine Deiminase Pathway Impacts Antibiotic Tolerance during Biofilm-Mediated Streptococcus pyogenes Infections

mBio ◽  
2020 ◽  
Vol 11 (4) ◽  
Author(s):  
Jeffrey A. Freiberg ◽  
Yoann Le Breton ◽  
Janette M. Harro ◽  
Devon L. Allison ◽  
Kevin S. McIver ◽  
...  

ABSTRACT Bacterial biofilms are responsible for a variety of serious human infections and are notoriously difficult to treat due to their recalcitrance to antibiotics. Further work is necessary to elicit a full understanding of the mechanism of this antibiotic tolerance. The arginine deiminase (ADI) pathway is responsible for bacterial pH maintenance and is highly expressed during biofilm growth in multiple bacterial species. Using the group A Streptococcus (GAS) as a model human pathogen, the ADI pathway was demonstrated to contribute to biofilm growth. The inability of antibiotics to reduce GAS populations when in a biofilm was demonstrated by in vitro studies and a novel animal model of nasopharyngeal infection. However, disruption of the ADI pathway returned GAS biofilms to planktonic levels of antibiotic sensitivity, suggesting the ADI pathway is influential in biofilm-related antibiotic treatment failure and provides a new strategic target for the treatment of biofilm infections in GAS and potentially numerous other bacterial species. IMPORTANCE Biofilm-mediated bacterial infections are a major threat to human health because of their recalcitrance to antibiotic treatment. Through the study of Streptococcus pyogenes, a significant human pathogen that is known to form antibiotic-tolerant biofilms, we demonstrated the role that a bacterial pathway known for responding to acid stress plays in biofilm growth and antibiotic tolerance. This not only provides some insight into antibiotic treatment failure in S. pyogenes infections but also, given the widespread nature of this pathway, provides a potentially broad target for antibiofilm therapies. This discovery has the potential to impact the treatment of many different types of recalcitrant biofilm infections.

2015 ◽  
Vol 197 (7) ◽  
pp. 1288-1296 ◽  
Author(s):  
Zachary T. Cusumano ◽  
Michael G. Caparon

ABSTRACTA common stress encountered by both pathogenic and environmental bacteria is exposure to a low-pH environment, which can inhibit cell growth and lead to cell death. One major defense mechanism against this stress is the arginine deiminase (ADI) pathway, which catabolizes arginine to generate two ammonia molecules and one molecule of ATP. While this pathway typically relies on the utilization of arginine, citrulline has also been shown to enter into the pathway and contribute to protection against acid stress. In the pathogenic bacteriumStreptococcus pyogenes, the utilization of citrulline has been demonstrated to contribute to pathogenesis in a murine model of soft tissue infection, although the mechanism underlying its role in infection is unknown. To gain insight into this question, we analyzed a panel of mutants defective in different steps in the ADI pathway to dissect how arginine and citrulline protectS. pyogenesin a low-pH environment. While protection provided by arginine utilization occurred through the buffering of the extracellular environment, citrulline catabolism protection was pH independent, requiring the generation of ATP via the ADI pathway and a functional F1Fo-ATP synthase. This work demonstrates that arginine and citrulline catabolism protect against acid stress through distinct mechanisms and have unique contributions to virulence during an infection.IMPORTANCEAn important aspect of bacterial pathogenesis is the utilization of host-derived nutrients during an infection for growth and virulence. Previously published work from our lab identified a unique role for citrulline catabolism inStreptococcus pyogenesduring a soft tissue infection. The present article probes the role of citrulline utilization during this infection and its contribution to protection against acid stress. This work reveals a unique and concerted action between the catabolism of citrulline and the F1Fo-ATPase that function together to provide protection for bacteria in a low-pH environment. Dissection of these collaborative pathways highlights the complexity of bacterial infections and the contribution of atypical nutrients, such as citrulline, to pathogenesis.


2015 ◽  
Vol 197 (20) ◽  
pp. 3283-3293 ◽  
Author(s):  
Rabia Ladjouzi ◽  
Alain Bizzini ◽  
Willem van Schaik ◽  
Xinglin Zhang ◽  
Alain Rincé ◽  
...  

ABSTRACTEnterococci are naturally tolerant to typically bactericidal cell wall-active antibiotics, meaning that their growth is inhibited but they are not killed even when exposed to a high concentration of the drug. The molecular reasons for this extraordinary tolerance are still incompletely understood. Previous work showed that resistance to killing collapsed specifically in mutants affected in superoxide dismutase (Sod) activity, arguing that bactericidal antibiotic treatment led to induction of a superoxide burst. In the present work, we show that loss of antibiotic tolerance in ΔsodAmutants of pathogenic enterococci is dependent on the energy source present during antibiotic treatment. Hexoses induce greater killing than the pentose ribose, and no killing was observed with glycerol as the energy source. These results point to glycolytic reactions as crucial for antibiotic-mediated killing of ΔsodAmutants. A transposon mutant library was constructed inEnterococcus faecalis ΔsodAmutants and screened for restored tolerance of vancomycin. Partially restored tolerance was observed in mutants with transposon integrations into intergenic regions upstream of regulators implicated in arginine catabolism. In these mutants, the arginine deiminase operon was highly upregulated. A model for the action of cell wall-active antibiotics in tolerant and nontolerant bacteria is proposed.IMPORTANCEAntibiotic tolerance is a serious clinical concern, since tolerant bacteria have considerably increased abilities to resist killing by bactericidal drugs. Using enterococci as models for highly antibiotic-tolerant pathogens, we showed that tolerance of these bacteria is linked to their superoxide dismutase (Sod), arguing that bactericidal antibiotics induce generation of reactive oxygen species inside cells. Wild-type strains are tolerant because they detoxify these deleterious molecules by the activity of Sod, whereas Sod-deficient strains are killed. This study showed that killing depends on the energy source present during treatment and that an increase in arginine catabolism partially restored tolerance of the Sod mutants. These results are used to propose a mode-of-action model of cell wall-active antibiotics in tolerant and nontolerant bacteria.


mBio ◽  
2018 ◽  
Vol 9 (3) ◽  
Author(s):  
Frédéric Goormaghtigh ◽  
Nathan Fraikin ◽  
Marta Putrinš ◽  
Thibaut Hallaert ◽  
Vasili Hauryliuk ◽  
...  

ABSTRACTPersistence is a reversible and low-frequency phenomenon allowing a subpopulation of a clonal bacterial population to survive antibiotic treatments. Upon removal of the antibiotic, persister cells resume growth and give rise to viable progeny. Type II toxin-antitoxin (TA) systems were assumed to play a key role in the formation of persister cells inEscherichia colibased on the observation that successive deletions of TA systems decreased persistence frequency. In addition, the model proposed that stochastic fluctuations of (p)ppGpp levels are the basis for triggering activation of TA systems. Cells in which TA systems are activated are thought to enter a dormancy state and therefore survive the antibiotic treatment. Using independently constructed strains and newly designed fluorescent reporters, we reassessed the roles of TA modules in persistence both at the population and single-cell levels. Our data confirm that the deletion of 10 TA systems does not affect persistence to ofloxacin or ampicillin. Moreover, microfluidic experiments performed with a strain reporting the induction of theyefM-yoeBTA system allowed the observation of a small number of type II persister cells that resume growth after removal of ampicillin. However, we were unable to establish a correlation between high fluorescence and persistence, since the fluorescence of persister cells was comparable to that of the bulk of the population and none of the cells showing high fluorescence were able to resume growth upon removal of the antibiotic. Altogether, these data show that there is no direct link between induction of TA systems and persistence to antibiotics.IMPORTANCEWithin a growing bacterial population, a small subpopulation of cells is able to survive antibiotic treatment by entering a transient state of dormancy referred to as persistence. Persistence is thought to be the cause of relapsing bacterial infections and is a major public health concern. Type II toxin-antitoxin systems are small modules composed of a toxic protein and an antitoxin protein counteracting the toxin activity. These systems were thought to be pivotal players in persistence until recent developments in the field. Our results demonstrate that previous influential reports had technical flaws and that there is no direct link between induction of TA systems and persistence to antibiotics.


mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Eliza A. Zalis ◽  
Austin S. Nuxoll ◽  
Sylvie Manuse ◽  
Geremy Clair ◽  
Lauren C. Radlinski ◽  
...  

ABSTRACT Chronic bacterial infections are difficult to eradicate, though they are caused primarily by drug-susceptible pathogens. Antibiotic-tolerant persisters largely account for this paradox. In spite of their significance in the recalcitrance of chronic infections, the mechanism of persister formation is poorly understood. We previously reported that a decrease in ATP levels leads to drug tolerance in Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. We reasoned that stochastic fluctuation in the expression of tricarboxylic acid (TCA) cycle enzymes can produce cells with low energy levels. S. aureus knockouts in glutamate dehydrogenase, 2-oxoketoglutarate dehydrogenase, succinyl coenzyme A (CoA) synthetase, and fumarase have low ATP levels and exhibit increased tolerance of fluoroquinolone, aminoglycoside, and β-lactam antibiotics. Fluorescence-activated cell sorter (FACS) analysis of TCA genes shows a broad Gaussian distribution in a population, with differences of over 3 orders of magnitude in the levels of expression between individual cells. Sorted cells with low levels of TCA enzyme expression have an increased tolerance of antibiotic treatment. These findings suggest that fluctuations in the levels of expression of energy-generating components serve as a mechanism of persister formation. IMPORTANCE Persister cells are rare phenotypic variants that are able to survive antibiotic treatment. Unlike resistant bacteria, which have specific mechanisms to prevent antibiotics from binding to their targets, persisters evade antibiotic killing by entering a tolerant nongrowing state. Persisters have been implicated in chronic infections in multiple species, and growing evidence suggests that persister cells are responsible for many cases of antibiotic treatment failure. New antibiotic treatment strategies aim to kill tolerant persister cells more effectively, but the mechanism of tolerance has remained unclear until now.


2020 ◽  
Vol 202 (11) ◽  
Author(s):  
Katelyn E. Carothers ◽  
Zhong Liang ◽  
Jeffrey Mayfield ◽  
Deborah L. Donahue ◽  
Mijoon Lee ◽  
...  

ABSTRACT Streptococcus pyogenes, or group A Streptococcus (GAS), is both a pathogen and an asymptomatic colonizer of human hosts and produces a large number of surface-expressed and secreted factors that contribute to a variety of infection outcomes. The GAS-secreted cysteine protease SpeB has been well studied for its effects on the human host; however, despite its broad proteolytic activity, studies on how this factor is utilized in polymicrobial environments are lacking. Here, we utilized various forms of SpeB protease to evaluate its antimicrobial and antibiofilm properties against the clinically important human colonizer Staphylococcus aureus, which occupies niches similar to those of GAS. For our investigation, we used a skin-tropic GAS strain, AP53CovS+, and its isogenic ΔspeB mutant to compare the production and activity of native SpeB protease. We also generated active and inactive forms of recombinant purified SpeB for functional studies. We demonstrate that SpeB exhibits potent biofilm disruption activity at multiple stages of S. aureus biofilm formation. We hypothesized that the surface-expressed adhesin SdrC in S. aureus was cleaved by SpeB, which contributed to the observed biofilm disruption. Indeed, we found that SpeB cleaved recombinant SdrC in vitro and in the context of the full S. aureus biofilm. Our results suggest an understudied role for the broadly proteolytic SpeB as an important factor for GAS colonization and competition with other microorganisms in its niche. IMPORTANCE Streptococcus pyogenes (GAS) causes a range of diseases in humans, ranging from mild to severe, and produces many virulence factors in order to be a successful pathogen. One factor produced by many GAS strains is the protease SpeB, which has been studied for its ability to cleave and degrade human proteins, an important factor in GAS pathogenesis. An understudied aspect of SpeB is the manner in which its broad proteolytic activity affects other microorganisms that co-occupy niches similar to that of GAS. The significance of the research reported herein is the demonstration that SpeB can degrade the biofilms of the human pathogen Staphylococcus aureus, which has important implications for how SpeB may be utilized by GAS to successfully compete in a polymicrobial environment.


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Marc B. Habash ◽  
Mara C. Goodyear ◽  
Amber J. Park ◽  
Matthew D. Surette ◽  
Emily C. Vis ◽  
...  

ABSTRACT Increasing antibiotic resistance among pathogenic bacterial species is a serious public health problem and has prompted research examining the antibacterial effects of alternative compounds and novel treatment strategies. Compounding this problem is the ability of many pathogenic bacteria to form biofilms during chronic infections. Importantly, these communities are often recalcitrant to antibiotic treatments that show effectiveness against acute infection. The antimicrobial properties of silver have been known for decades, but recently silver and silver-containing compounds have seen renewed interest as antimicrobial agents for treating bacterial infections. The goal of this study was to assess the ability of citrate-capped silver nanoparticles (AgNPs) of various sizes, alone and in combination with the aminoglycoside antibiotic tobramycin, to inhibit established Pseudomonas aeruginosa biofilms. Our results demonstrate that smaller 10-nm and 20-nm AgNPs were more effective at synergistically potentiating the activity of tobramycin. Visualization of biofilms treated with combinations of 10-nm AgNPs and tobramycin reveals that the synergistic bactericidal effect may be caused by disrupting cellular membranes. Minimum biofilm eradication concentration (MBEC) assays using clinical P. aeruginosa isolates shows that small AgNPs are more effective than larger AgNPs at inhibiting biofilms, but that the synergy effect is likely a strain-dependent phenomenon. These data suggest that small AgNPs synergistically potentiate the activity of tobramycin against P. aeruginosa in vitro and may reveal a potential role for AgNP/antibiotic combinations in treating patients with chronic infections in a strain-specific manner.


2017 ◽  
Vol 199 (14) ◽  
Author(s):  
Sujina Mali ◽  
Morgan Mitchell ◽  
Spencer Havis ◽  
Abiodun Bodunrin ◽  
Jonathan Rangel ◽  
...  

ABSTRACT Dormancy is a protective state in which diverse bacteria, including Mycobacterium tuberculosis, Staphylococcus aureus, Treponema pallidum (syphilis), and Borrelia burgdorferi (Lyme disease), curtail metabolic activity to survive external stresses, including antibiotics. Evidence suggests dormancy consists of a continuum of interrelated states, including viable but nonculturable (VBNC) and persistence states. VBNC and persistence contribute to antibiotic tolerance, reemergence from latent infections, and even quorum sensing and biofilm formation. Previous studies indicate that the protein mechanisms regulating persistence and VBNC states are not well understood. We have queried the VBNC state of Micrococcus luteus NCTC 2665 (MI-2665) by quantitative proteomics combining gel electrophoresis, high-performance liquid chromatography, and tandem mass spectrometry to elucidate some of these mechanisms. MI-2665 is a nonpathogenic actinobacterium containing a small (2.5-Mb), high-GC-content genome which exhibits a well-defined VBNC state induced by nutrient deprivation. The MI-2665 VBNC state demonstrated a loss of protein diversity accompanied by increased levels of 18 proteins that are conserved across actinobacteria, 14 of which have not been previously identified in VNBC. These proteins implicate an anaplerotic strategy in the transition to VBNC, including changes in the glyoxylate shunt, redox and amino acid metabolism, and ribosomal regulatory processes. Our data suggest that MI-2665 is a viable model for dissecting the protein mechanisms underlying the VBNC stress response and provide the first protein-level signature of this state. We expect that this protein signature will enable future studies deciphering the protein mechanisms of dormancy and identify novel therapeutic strategies effective against antibiotic-tolerant bacterial infections. IMPORTANCE Dormancy is a protective state enabling bacteria to survive antibiotics, starvation, and the immune system. Dormancy is comprised of different states, including persistent and viable but nonculturable (VBNC) states that contribute to the spread of bacterial infections. Therefore, it is imperative to identify how bacteria utilize these different dormancy states to survive antibiotic treatment. The objective of our research is to eliminate dormancy as a route to antibiotic tolerance by understanding the proteins that control dormancy in Micrococcus luteus NCTC 2665. This bacterium has unique advantages for studying dormancy, including a small genome and a well-defined and reproducible VBNC state. Our experiments implicate four previously identified and 14 novel proteins upregulated in VBNC that may regulate this critical survival mechanism.


2013 ◽  
Vol 82 (1) ◽  
pp. 233-242 ◽  
Author(s):  
Zachary T. Cusumano ◽  
Michael E. Watson ◽  
Michael G. Caparon

ABSTRACTA bacterium's ability to acquire nutrients from its host during infection is an essential component of pathogenesis. For the Gram-positive pathogenStreptococcus pyogenes, catabolism of the amino acid arginine via the arginine deiminase (ADI) pathway supplements energy production and provides protection against acid stressin vitro. Its expression is enhanced in murine models of infection, suggesting an important rolein vivo. To gain insight into the function of the ADI pathway in pathogenesis, the virulence of mutants defective in each of its enzymes was examined. Mutants unable to use arginine (ΔArcA) or citrulline (ΔArcB) were attenuated for carriage in a murine model of asymptomatic mucosal colonization. However, in a murine model of inflammatory infection of cutaneous tissue, the ΔArcA mutant was attenuated but the ΔArcB mutant was hyperattenuated, revealing an unexpected tissue-specific role for citrulline metabolism in pathogenesis. When mice defective for the arginine-dependent production of nitric oxide (iNOS−/−) were infected with the ΔArcA mutant, cutaneous virulence was rescued, demonstrating that the ability ofS. pyogenesto utilize arginine was dispensable in the absence of nitric oxide-mediated innate immunity. This work demonstrates the importance of arginine and citrulline catabolism and suggests a novel mechanism of virulence by whichS. pyogenesuses its metabolism to modulate innate immunity through depletion of an essential host nutrient.


2020 ◽  
Vol 9 (13) ◽  
Author(s):  
Miranda E. Pitt ◽  
Son H. Nguyen ◽  
Tânia P. S. Duarte ◽  
Louise F. Roddam ◽  
Mark A. T. Blaskovich ◽  
...  

Pandoraea fibrosis is a newly identified Gram-negative bacterial species that was isolated from the respiratory tract of an Australian cystic fibrosis patient. The complete assembled genome sequences of two consecutive isolates (second isolate collected 11 months after antibiotic treatment) from the same individual are presented here.


mSystems ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Irina M. Velsko ◽  
Brinta Chakraborty ◽  
Marcelle M. Nascimento ◽  
Robert A. Burne ◽  
Vincent P. Richards

ABSTRACTHealth-associated oralStreptococcusspecies are promising probiotic candidates to protect against dental caries. Ammonia production through the arginine deiminase system (ADS), which can increase the pH of oral biofilms, and direct antagonism of caries-associated bacterial species are desirable properties for oral probiotic strains. ADS and antagonistic activities can vary dramatically among individuals, but the genetic basis for these differences is unknown. We sequenced whole genomes of a diverse set of clinical oralStreptococcusisolates and examined the genetic basis of variability in ADS and antagonistic activities. A total of 113 isolates were included and represented 10 species:Streptococcus australis, A12-like,S. cristatus,S. gordonii,S. intermedius,S. mitis,S. oralisincludingS. oralissubsp.dentisani,S. parasanguinis,S. salivarius, andS. sanguinis. Mean ADS activity and antagonism onStreptococcus mutansUA159 were measured for each isolate, and each isolate was whole genome shotgun sequenced on an Illumina MiSeq. Phylogenies were built of genes known to be involved in ADS activity and antagonism. Several approaches to correlate the pan-genome with phenotypes were performed. Phylogenies of genes previously identified in ADS activity and antagonism grouped isolates by species, but not by phenotype. A genome-wide association study (GWAS) identified additional genes potentially involved in ADS activity or antagonism across all the isolates we sequenced as well as within several species. Phenotypic heterogeneity in oral streptococci is not necessarily reflected by genotype and is not species specific. Probiotic strains must be carefully selected based on characterization of each strain and not based on inclusion within a certain species.IMPORTANCERepresentative type strains are commonly used to characterize bacterial species, yet species are phenotypically and genotypically heterogeneous. Conclusions about strain physiology and activity based on a single strain therefore may be inappropriate and misleading. When selecting strains for probiotic use, the assumption that all strains within a species share the same desired probiotic characteristics may result in selection of a strain that lacks the desired traits, and therefore makes a minimally effective or ineffective probiotic. Health-associated oral streptococci are promising candidates for anticaries probiotics, but strains need to be carefully selected based on observed phenotypes. We characterized the genotypes and anticaries phenotypes of strains from 10 species of oral streptococci and demonstrate poor correlation between genotype and phenotype across all species.


Sign in / Sign up

Export Citation Format

Share Document