scholarly journals Complement Receptor 3 Mediates HIV-1 Transcytosis across an Intact Cervical Epithelial Cell Barrier: New Insight into HIV Transmission in Women

mBio ◽  
2022 ◽  
Author(s):  
Christopher J. Day ◽  
Rachael L. Hardison ◽  
Belinda L. Spillings ◽  
Jessica Poole ◽  
Joseph A. Jurcisek ◽  
...  

In women, the lower female reproductive tract is the primary site for HIV infection. How HIV traverses the epithelium to infect CD4 T cells in the submucosa is ill-defined.

2019 ◽  
Vol 15 (1) ◽  
pp. 63-75 ◽  
Author(s):  
Barbara L. Shacklett

As our understanding of mucosal immunity increases, it is becoming clear that the host response to HIV-1 is more complex and nuanced than originally believed. The mucosal landscape is populated with a variety of specialized cell types whose functions include combating infectious agents while preserving commensal microbiota, maintaining barrier integrity, and ensuring immune homeostasis. Advances in multiparameter flow cytometry, gene expression analysis and bioinformatics have allowed more detailed characterization of these cell types and their roles in host defense than was previously possible. This review provides an overview of existing literature on immunity to HIV-1 and SIVmac in mucosal tissues of the female reproductive tract and the gastrointestinal tract, focusing on major effector cell populations and briefly summarizing new information on tissue-resident memory T cells, Treg, Th17, Th22 and innate lymphocytes (ILC), subsets that have been studied primarily in the gastrointestinal mucosa.


2019 ◽  
Vol 15 (1) ◽  
pp. 36-40
Author(s):  
Christopher J. Miller ◽  
Ronald S. Veazey

Because HIV is sexually transmitted, there is considerable interest in defining the nature of anti-HIV immunity in the female reproductive tract (FRT) and in developing ways to elicit antiviral immunity in the FRT through vaccination. Although it is assumed that the mucosal immune system of the FRT is of central importance for protection against sexually transmitted diseases, including HIV, this arm of the immune system has only recently been studied. Here, we provide a brief review of the role of T cells in the FRT in blocking and facilitating HIV transmission.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Tongcui Ma ◽  
Xiaoyu Luo ◽  
Ashley F George ◽  
Gourab Mukherjee ◽  
Nandini Sen ◽  
...  

The female reproductive tract (FRT) is the most common site of infection during HIV transmission to women, but viral remodeling complicates characterization of cells targeted for infection. Here, we report extensive phenotypic analyses of HIV-infected endometrial cells by CyTOF, and use a ‘nearest neighbor’ bioinformatics approach to trace cells to their original pre-infection phenotypes. Like in blood, HIV preferentially targets memory CD4+ T cells in the endometrium, but these cells exhibit unique phenotypes and sustain much higher levels of infection. Genital cell remodeling by HIV includes downregulating TCR complex components and modulating chemokine receptor expression to promote dissemination of infected cells to lymphoid follicles. HIV also upregulates the anti-apoptotic protein BIRC5, which when blocked promotes death of infected endometrial cells. These results suggest that HIV remodels genital T cells to prolong viability and promote viral dissemination and that interfering with these processes might reduce the likelihood of systemic viral spread.


2005 ◽  
Vol 2 (1) ◽  
pp. 35-38 ◽  
Author(s):  
Alexandra L. Howell ◽  
Susana N. Asin ◽  
Grant R. Yeaman ◽  
Charles R. Wira

Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3176
Author(s):  
Sharon M. Anderson ◽  
Andrea R. Thurman ◽  
Neelima Chandra ◽  
Suzanne S. Jackson ◽  
Susana Asin ◽  
...  

While vitamin D insufficiency is known to impact a multitude of health outcomes, including HIV-1, little is known about the role of vitamin D-mediated immune regulation in the female reproductive tract (FRT). We performed a pilot clinical study of 20 women with circulating 25(OH)D levels <62.5 nmol/L. Participants were randomized into either weekly or daily high-dose oral vitamin D supplementation groups. In addition to serum vitamin D levels, genital mucosal endpoints, including soluble mediators, immune cell populations, gene expression, and ex vivo HIV-1 infection, were assessed. While systemic vitamin D levels showed a significant increase following supplementation, these changes translated into modest effects on the cervicovaginal factors studied. Paradoxically, post-supplementation vitamin D levels were decreased in cervicovaginal fluids. Given the strong correlation between vitamin D status and HIV-1 infection and the widespread nature of vitamin D deficiency, further understanding of the role of vitamin D immunoregulation in the female reproductive tract is important.


2014 ◽  
Vol 58 (11) ◽  
pp. 6444-6453 ◽  
Author(s):  
Nabanita Biswas ◽  
Marta Rodriguez-Garcia ◽  
Zheng Shen ◽  
Sarah G. Crist ◽  
Jack E. Bodwell ◽  
...  

ABSTRACTTenofovir (TFV) is a reverse transcriptase inhibitor used in microbicide preexposure prophylaxis trials to prevent HIV infection. Recognizing that changes in cytokine/chemokine secretion and nucleotidase biological activity can influence female reproductive tract (FRT) immune protection against HIV infection, we tested the hypothesis that TFV regulates immune protection in the FRT. Epithelial cells, fibroblasts, CD4+T cells, and CD14+cells were isolated from the endometrium (Em), endocervix (Cx), and ectocervix (Ecx) following hysterectomy. The levels of proinflammatory cytokines (macrophage inflammatory protein 3α [MIP-3α], interleukin 8 [IL-8], and tumor necrosis factor alpha [TNF-α]), the expression levels of specific nucleotidases, and nucleotidase biological activities were analyzed in the presence or absence of TFV. TFV influenced mRNA and/or protein cytokines and nucleotidases in a cell- and site-specific manner. TFV significantly enhanced IL-8 and TNF-α secretion by epithelial cells from the Em and Ecx but not from the Cx. In contrast, in response to TFV, IL-8 secretion was significantly decreased in Em and Cx fibroblasts but increased with fibroblasts from the Ecx. When incubated with CD4+T cells from the FRT, TFV increased IL-8 (Em and Ecx) and TNF-α (Cx and Ecx) secretion levels. Moreover, when incubated with Em CD14+cells, TFV significantly increased MIP-3α, IL-8, and TNF-α secretion levels relative to those of the controls. In contrast, nucleotidase biological activities were significantly decreased by TFV in epithelial (Cx) and CD4+T cells (Em) but increased in fibroblasts (Em). Our findings indicate that TFV modulates proinflammatory cytokines, nucleotidase gene expression, and nucleotidase biological activity in epithelial cells, fibroblasts, CD4+T cells, and CD14+cells at distinct sites within the FRT.


2014 ◽  
Vol 71 (6) ◽  
pp. 608-617 ◽  
Author(s):  
Ruizhong Shen ◽  
Holly E. Richter ◽  
Phillip D. Smith

Sign in / Sign up

Export Citation Format

Share Document