scholarly journals Activation of the STAT signaling pathway can cause expression of caspase 1 and apoptosis.

1997 ◽  
Vol 17 (9) ◽  
pp. 5328-5337 ◽  
Author(s):  
Y E Chin ◽  
M Kitagawa ◽  
K Kuida ◽  
R A Flavell ◽  
X Y Fu

Protein tyrosine kinases activate the STAT (signal transducer and activator of transcription) signaling pathway, which can play essential roles in cell differentiation, cell cycle control, and development. However, the potential role of the STAT signaling pathway in the induction of apoptosis remains unexplored. Here we show that gamma interferon (IFN-gamma) activated STAT1 and induced apoptosis in both A431 and HeLa cells, whereas epidermal growth factor (EGF) activated STAT proteins and induced apoptosis in A431 but not in HeLa cells. EGF receptor autophosphorylation and mitogen-activated protein kinase activation in response to EGF were similar in both cell lines. The breast cancer cell line MDA-MB-468 exhibited a similar response to A431 cells, i.e., STAT activation and apoptosis correlatively resulted from EGF or IFN-gamma treatment. In addition, in a mutant A431 cell line in which STAT activation was abolished, no apoptosis was induced by either EGF or IFN-gamma. We further demonstrated that both EGF and IFN-gamma induced caspase 1 (interleukin-1beta converting enzyme [ICE]) gene expression in a STAT-dependent manner. IFN-gamma was unable to induce ICE gene expression and apoptosis in either JAK1-deficient HeLa cells (E2A4) or STAT1-deficient cells (U3A). However, ICE gene expression and apoptosis were induced by IFN-gamma in U3A cells into which STAT1 had been reintroduced. Moreover, both EGF-induced apoptosis and IFN-gamma-induced apoptosis were effectively blocked by Z-Val-Ala-Asp-fluoromethylketone (ZVAD) in all the cells tested, and studies from ICE-deficient cells indicated that ICE gene expression was necessary for IFN-gamma-induced apoptosis. We conclude that activation of the STAT signaling pathway can induce apoptosis through the induction of ICE gene expression.

Genetics ◽  
1998 ◽  
Vol 149 (2) ◽  
pp. 879-892 ◽  
Author(s):  
Anatoly V Grishin ◽  
Michael Rothenberg ◽  
Maureen A Downs ◽  
Kendall J Blumer

Abstract In the yeast Saccharomyces cerevisiae, mating pheromone response is initiated by activation of a G protein- and mitogen-activated protein (MAP) kinase-dependent signaling pathway and attenuated by several mechanisms that promote adaptation or desensitization. To identify genes whose products negatively regulate pheromone signaling, we screened for mutations that suppress the hyperadaptive phenotype of wild-type cells overexpressing signaling-defective G protein β subunits. This identified recessive mutations in MOT3, which encodes a nuclear protein with two Cys2-His2 Zn fingers. MOT3 was found to be a dosage-dependent inhibitor of pheromone response and pheromone-induced gene expression and to require an intact signaling pathway to exert its effects. Several results suggested that Mot3 attenuates expression of pheromone-responsive genes by mechanisms distinct from those used by the negative transcriptional regulators Cdc36, Cdc39, and Mot2. First, a Mot3-lexA fusion functions as a transcriptional activator. Second, Mot3 is a dose-dependent activator of several genes unrelated to pheromone response, including CYC1, SUC2, and LEU2. Third, insertion of consensus Mot3 binding sites (C/A/T)AGG(T/C)A activates a promoter in a MOT3-dependent manner. These findings, and the fact that consensus binding sites are found in the 5′ flanking regions of many yeast genes, suggest that Mot3 is a globally acting transcriptional regulator. We hypothesize that Mot3 regulates expression of factors that attenuate signaling by the pheromone response pathway.


2003 ◽  
Vol 17 (10) ◽  
pp. 1921-1930 ◽  
Author(s):  
Twila A. Jackson ◽  
David M. Koterwas ◽  
Melissa A. Morgan ◽  
Andrew P. Bradford

Abstract Fibroblast growth factors (FGFs) play a critical role in pituitary development and in pituitary tumor formation and progression. We have previously characterized FGF signal transduction and regulation of the tissue-specific rat prolactin (rPRL) promoter in GH4 pituitary cells. FGF induction of rPRL transcription is independent of Ras, but mediated by a protein kinase C-δ (PKCδ)-dependent activation of MAPK (ERK). Here we demonstrate a functional role for the Rho family monomeric G protein, Rac1, in FGF regulation of PRL gene expression via an atypical signaling pathway. Expression of dominant negative Rac, but not RhoA or Cdc42, selectively inhibited FGF-induced rPRL promoter activity. Moreover, expression of dominant negative Rac also attenuated FGF-2 and FGF-4 stimulation of MAPK (ERK). However, in contrast to other Rac-dependent signaling pathways, FGF activation of rPRL promoter activity was independent of the c-Jun N-terminal kinase (JNK) and phosphoinositide 3-kinase/Akt cascades. FGFs failed to activate JNK1 or JNK2, and expression of dominant negative JNK or Akt constructs did not block FGF-induced PRL transcription. Consistent with the role of PKCδ in FGF regulation of PRL gene expression, activation of the rPRL promoter was blocked by an inhibitor of phospholipase Cγ (PLCγ) activity. FGF treatment also induced rapid tyrosine phosphorylation of PLCγ in a Rac-dependent manner. These results suggest that FGF-2 and FGF-4 activate PRL gene expression via a novel Rac1, PLCγ, PKCδ, and ERK cascade, independent of phosphoinositol-3-kinase and JNK.


1994 ◽  
Vol 267 (5) ◽  
pp. C1398-C1404 ◽  
Author(s):  
F. Besancon ◽  
G. Przewlocki ◽  
I. Baro ◽  
A. S. Hongre ◽  
D. Escande ◽  
...  

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, resulting in defective transepithelial Cl- transport. The regulation of CF gene expression is not fully understood. We report that interferon-gamma (IFN-gamma), but not IFN-alpha or -beta, downregulates CFTR mRNA levels in two colon-derived epithelial cell lines, HT-29 and T84, in a time- and concentration (from 0.1 IU/ml)-dependent manner. IFN-gamma has no effect on the transcription rate of the CFTR gene but reduces CFTR mRNA half-life, indicating that it exerts a posttranscriptional regulation of CFTR expression, at least partly, through destabilization of the transcripts. Cells treated with IFN-gamma contain subnormal amounts of 165-kDa CFTR protein. Assays of adenosine 3',5'-cyclic monophosphate-stimulated 36Cl- efflux and whole cell currents show that CFTR function is diminished in IFN-gamma-treated cells. IFN-gamma and tumor necrosis factor-alpha synergistically reduce CFTR gene expression. Our results suggest that production of these cytokines in response to bacterial infections and inflammatory disorders may alter transmembrane Cl- transport.


2019 ◽  
Vol 2019 ◽  
pp. 1-26
Author(s):  
Liubing Hu ◽  
Yan Wang ◽  
Zui Chen ◽  
Liangshun Fu ◽  
Sheng Wang ◽  
...  

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent cancer cell apoptosis-inducing factor that can induce apoptosis in a variety of cancer cells. However, resistance to TRAIL in cancer cells is a huge obstacle in creating effective TRAIL-targeted clinical therapies. Thus, agents that can either enhance the effect of TRAIL or overcome its resistance are needed. In this study, we combined TRAIL with SNX-2112, an Hsp90 inhibitor we previously developed, to explore the effect and mechanism that SNX-2112 enhanced TRAIL-induced apoptosis in cervical cancer cells. Our results showed that SNX-2112 markedly enhanced TRAIL-induced cytotoxicity in HeLa cells, and this combination was found to be synergistic. Additionally, we found that SNX-2112 sensitized TRAIL-mediated apoptosis caspase-dependently in TRAIL-resistant HeLa cells. Mechanismly, SNX-2112 downregulated antiapoptosis proteins, including Bcl-2, Bcl-XL, and FLIP, promoted the accumulation of reactive oxygen species (ROS), and increased the expression levels of p-JNK and p53. ROS scavenger NAC rescued SNX-2112/TRAIL-induced apoptosis and suppressed SNX-2112-induced p-JNK and p53. Moreover, SNX-2112 induced the upregulation of death-receptor DR5 in HeLa cells. The silencing of DR5 by siRNA significantly decreased cell apoptosis by the combined effect of SNX-2112 and TRAIL. In addition, SNX-2112 inhibited the Akt/mTOR signaling pathway and induced autophagy in HeLa cells. The blockage of autophagy by bafilomycin A1 or Atg7 siRNA abolished SNX-2112-induced upregulation of DR5. Meanwhile, ROS scavenger NAC, JNK inhibitor SP600125, and p53 inhibitor PFTα were used to verify that autophagy-mediated upregulation of DR5 was regulated by the SNX-2112-stimulated activation of the ROS-JNK-p53 signaling pathway. Thus, the combination of SNX-2112 and TRAIL may provide a novel strategy for the treatment of human cervical cancer by overcoming cellular mechanisms of apoptosis resistance.


2005 ◽  
Vol 288 (2) ◽  
pp. G213-G220 ◽  
Author(s):  
Nan Li ◽  
Qingding Wang ◽  
Jing Li ◽  
Xiaofu Wang ◽  
Mark R. Hellmich ◽  
...  

Mitochondria, organelles essential for ATP production, play a central role in a number of cellular functions, including the regulation of insulin secretion. Neurotensin (NT), an important regulatory intestinal hormone, has been implicated in fatty acid translocation, gut motility and secretion, and intestinal cell growth; however, mechanisms regulating NT secretion have not been entirely defined. The purpose of this study was to determine the effect of inhibition of mitochondrial gene transcription on NT secretion. BON cells, a novel human carcinoid cell line that produces and secretes NT peptide and expresses the gene encoding NT (designated NT/N), were treated with ethidium bromide (EB; 0.05, 0.1, and 0.4 μg/ml), an inhibitor of DNA and RNA synthesis, or vehicle over a time course (1–4 days). Cells were then stimulated with either ACh (100 μM) or phorbol 12 myristate,13-acetate (PMA, 10 nM) for 30 min. Media and cells were extracted, and NT peptide measured by RIA. Treatment with EB had no effect on BON cell viability or cell cycle distribution over the 4-day course. In contrast, EB treatment produced a dose-dependent reduction of mitochondrial gene expression; however, NT/N gene expression was not altered. Mitochondrial inhibition by EB treatment suppressed NT secretion induced by ACh and PMA, both in a dose-dependent manner. EB-mediated inhibition of NT secretion and mitochondrial gene expression was reversed with removal of EB. Our results demonstrate that inhibition of mitochondrial gene transcription suppresses both ACh- and PMA-stimulated NT release. These findings are the first to demonstrate that mitochondrial function is important for agonist-mediated NT secretion.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 110-110 ◽  
Author(s):  
Keita Kirito ◽  
Hu Yongzhen ◽  
Kozue Yoshida ◽  
Toru Mitsumori ◽  
Kei Nakajima ◽  
...  

Abstract In spite of the recent development of therapeutic strategies, multiple myeloma (MM) still remains incurable. Several cytokines and chemokines contribute to progression of the disease and acquisition of resistance to chemotherapy. These humoral factors support the growth and survival of myeloma cells through the regulation of transcription factors including NF-κB, Stat3 and FOXO3a. Hypoxia inducible factor-1 (HIF-1) is an important transcription factor that is activated under low oxygen tension and controls dozens of genes involved in angiogenesis, energy production and resistance to apoptosis. Interestingly, HIF-1 is frequently activated in cancer cells even under normoxic condition and it is well established that HIF-1 expression and activation correlates with tumor progression and resistance to cancer treatments. In this study, we investigated whether HIF-1 is involved in the biology of multiple myeloma. To this end, we used three MM cell lines U266, RPMI8226 and KMM-1. After informed consent, we also prepared primary MM cells from bone marrow samples of patients (n=5) using anti-CD138 magnetic beads. Initially, we treated MM cells with insulin-like growth factor-1 (IGF-1) and IL-6, both of which are major growth and survival factors for myeloma cells. Treatment with IGF-1 and, to be a lesser degree, IL-6 clearly enhanced expression of HIF-1α, a subunit of HIF-1, in all three cell lines. Similar results were obtained from isolated primary MM cells. Based on several lines of evidence that survivin, a member of inhibitor of apoptosis (IAP) family protein, is transcriptionally regulated by HIF-1 in breast cancer cells, and that this anti-apoptotic factor is important for growth of MM cells, we examined whether HIF-1 supports the survival of MM cells through the induction of survivin. Quantitative RT-PCR assay revealed that IGF-1 increased survivin mRNA both in MM cell lines and in primary MM cells. In addition, IGF-1 activated survivin gene promoter containing a HIF-1-binding site. To confirm that IGF-1-induced activation of survivin gene is mediated by HIF-1, we treated MM cell lines with echinomycin, an inhibitor of DNA-binding activity of HIF-1. As expected, echinomycin inhibited IGF-1-induced survivin gene expression in a dose-dependent manner. The inhibitor also induced apoptosis of MM cells, and IGF-1 could not rescue the MM cells from echinomycin-induced apoptosis. Furthermore, echinomycin enhanced melphalan-induced apoptosis of MM cells. To further examine the involvement of HIF-1 in IGF-1-induced survivin gene expression, we generated three independent HIF-1α knockdown KMM-1 clones using siRNA system. Survivin mRNA was not detected in the HIF-1α knockdown cells, and these clones easily underwent apoptosis even in the presence of IGF-1, compared to the parental cells. Taken together, HIF-1 plays a pivotal role in survival of MM cells through the induction of survivin gene. In conclusion, HIF-1 might be an attractive therapeutic target for MM.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2866-2866
Author(s):  
Hisayuki Yao ◽  
Eishi Ashihara ◽  
Rina Nagao ◽  
Shinya Kimura ◽  
Hideyo Hirai ◽  
...  

Abstract Abstract 2866 Poster Board II-842 Although new molecular targeting agents against multiple myeloma (MM) have been developed, MM still remains an incurable disease. It is important to continue to investigate new therapeutic agents based on the biology of MM cells. β-catenin is the downstream effector of Wnt signaling and it regulates genes implicated in malignant progression. We have demonstrated that blockade of Wnt/β-catenin signaling pathway inhibits the progression of MM by using RNA interference methods with an in vivo mouse model (Ashihara E, et al. Clin Cancer Res 15:2731, 2009.). In this study, we investigated the effects of AV-65, a novel inhibitor of the Wnt/β-catenin signaling pathway, on MM cells. The system to identify a series of small molecule compounds using a biomarker driven approach has been established. A gene expression biomarker signature reporting on the inhibition of Wnt/β-catenin signaling was generated upon treatment of a colon cancer cell line with β-catenin siRNA. This gene expression signatiure was used to screen a small molecule compound library to identify compounds which mimic knockdown of β-catenin and thus potentially inhibit the Wnt/β-catenin signaling pathway. One compound series, LC-363, was discovered from this screen and validated as novel Wnt/β-catenin signaling inhibitors (Strovel JW, et al. ASH meeting, 2007.). We investigated the inhibitory effects of AV-65, one of LC-363 compounds, on MM cell proliferation. AV-65 inhibited the proliferation of MM cells in a time- and a dose-dependent manner and the values of IC50 at 72 hrs were ranging from 11.7 to 82.1 nM. AV-65 also showed an inhibitory effect on the proliferation of RPMI8226/LR-5 melphalan-resistant MM cells (provided from Dr. William S. Dalton). In flow cytometric analysis, apoptotic cells were increased by AV-65 treatment in a time- and a dose-dependent manner. Western blotting analysis showed that β-catenin was ubiquitinated and that the expression of nuclear β-catenin diminished (Figure 1). Moreover, AV-65 suppressed T-cell factor transcriptional activities, resulting in the decrease of c-myc expression. Taken together, AV-65 promotes the degradation of β-catenin, resulting in the induction of apoptosis of MM cells. We next investigated the in vivo effects of AV-65 using an orthotopic MM-bearing mouse model. AV-65 inhibits the growth of MM cells and significantly prolongs the survival rates (Figure 2). In conclusion, AV-65 inhibited the proliferation of MM cells via inhibition of the Wnt/β-catenin signaling pathway. AV-65 is a promising therapeutic agent for treatment of MM. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document