scholarly journals Architectural Transcription Factor HMGI(Y) Promotes Tumor Progression and Mesenchymal Transition of Human Epithelial Cells

2001 ◽  
Vol 21 (2) ◽  
pp. 575-594 ◽  
Author(s):  
Raymond Reeves ◽  
Dale D. Edberg ◽  
Ying Li

ABSTRACT Numerous studies have demonstrated that overexpression or aberrant expression of the HMGI(Y) family of architectural transcription factors is frequently associated with both neoplastic transformation of cells and metastatic tumor progression. Little is known, however, about the molecular roles played by the HMGI(Y) proteins in these events. Here we report that human breast epithelial cells harboring tetracycline-regulated HMGI(Y) transgenes acquire the ability to form both primary and metastatic tumors in nude mice only when the transgenes are actively expressed. Unexpectedly, the HMG-Y, rather than the HMG-I, isoform of these proteins is the most effective elicitor of both neoplastic transformation and metastatic progression in vivo. Furthermore, expression of either antisense or dominant-negative HMGI(Y) constructs inhibits both the rate of proliferation of tumor cells and their ability to grow anchorage independently in soft agar. Array analysis of transcription profiles demonstrates that the HMG-I and HMG-Y isoform proteins each modulate the expression of distinctive constellations of genes known to be involved in signal transduction, cell proliferation, tumor initiation, invasion, migration, induction of angiogenesis, and colonization. Immunohistochemical analyses of tumors formed in nude mice indicate that many have undergone an epithelial-mesenchymal transition in vivo. Together, these findings demonstrate that overexpression of the HMGI(Y) proteins, more specifically, the HMG-Y isoform protein, is causally associated with both neoplastic transformation and metastatic progression and suggest that induction of integrins and their signaling pathways may play significant molecular roles in these biological events.

2021 ◽  
Vol 5 (2) ◽  
pp. e202101261
Author(s):  
Simon Grelet ◽  
Cécile Fréreux ◽  
Clémence Obellianne ◽  
Ken Noguchi ◽  
Breege V Howley ◽  
...  

Metastasis is the leading driver of cancer-related death. Tumor cell plasticity associated with the epithelial–mesenchymal transition (EMT), an embryonic program also observed in carcinomas, has been proposed to explain the colonization of distant organs by the primary tumor cells. Many studies have established correlations between EMT marker expression in the primary tumor and metastasis in vivo. However, the longstanding model of EMT-transitioned cells disseminating to secondary sites is still actively debated and hybrid states are presently considered as more relevant during tumor progression and metastasis. Here, we describe an unexplored role of EMT on the tumor microenvironment by controlling tumor innervation. Using in vitro and in vivo breast tumor progression models, we demonstrate that TGFβ-mediated tumor cell EMT triggers the expression of the embryonic LincRNA Platr18 those elevated expression controls the expression of the axon guidance protein semaphorin-4F and other neuron-related molecules such as IGSF11/VSIG-3. Platr18/Sema4F axis silencing abrogates axonogenesis and attenuates metastasis. Our observations suggest that EMT-transitioned cells are also locally required in the primary tumor to support distant dissemination by promoting axonogenesis, a biological process known for its role in metastatic progression of breast cancer.


Oncogenesis ◽  
2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Kaname Sakamoto ◽  
Kaori Endo ◽  
Kei Sakamoto ◽  
Kou Kayamori ◽  
Shogo Ehata ◽  
...  

AbstractETS homologous factor (EHF) belongs to the epithelium-specific subfamily of the E26 transformation-specific (ETS) transcription factor family. Currently, little is known about EHF’s function in cancer. We previously reported that ETS1 induces expression of the ZEB family proteins ZEB1/δEF1 and ZEB2/SIP1, which are key regulators of the epithelial–mesenchymal transition (EMT), by activating the ZEB1 promoters. We have found that EHF gene produces two transcript variants, namely a long form variant that includes exon 1 (EHF-LF) and a short form variant that excludes exon 1 (EHF-SF). Only EHF-SF abrogates ETS1-mediated activation of the ZEB1 promoter by promoting degradation of ETS1 proteins, thereby inhibiting the EMT phenotypes of cancer cells. Most importantly, we identified a novel point mutation within the conserved ETS domain of EHF, and found that EHF mutations abolish its original function while causing the EHF protein to act as a potential dominant negative, thereby enhancing metastasis in vivo. Therefore, we suggest that EHF acts as an anti-EMT factor by inhibiting the expression of ZEBs, and that EHF mutations exacerbate cancer progression.


Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 476 ◽  
Author(s):  
Chia-Jung Li ◽  
Pei-Yi Chu ◽  
Giou-Teng Yiang ◽  
Meng-Yu Wu

The transforming growth factor-β (TGF-β) signaling pathway plays multiple regulatory roles in the tumorigenesis and development of cancer. TGF-β can inhibit the growth and proliferation of epithelial cells and induce apoptosis, thereby playing a role in inhibiting breast cancer. Therefore, the loss of response in epithelial cells that leads to the inhibition of cell proliferation due to TGF-β is a landmark event in tumorigenesis. As tumors progress, TGF-β can promote tumor cell invasion, metastasis, and drug resistance. At present, the above-mentioned role of TGF-β is related to the interaction of multiple signaling pathways in the cell, which can attenuate or abolish the inhibition of proliferation and apoptosis-promoting effects of TGF-β and enhance its promotion of tumor progression. This article focuses on the molecular mechanisms through which TGF-β interacts with multiple intracellular signaling pathways in tumor progression and the effects of these interactions on tumorigenesis.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Qin Yu ◽  
Jianzhang Wang ◽  
Tiantian Li ◽  
Xinxin Xu ◽  
Xinyue Guo ◽  
...  

Endometrial adenocarcinoma is one of the most prevalent female reproductive tract cancers in the world, and the development of effective treatment is still the main goal of its current research. Epithelial-mesenchymal transition (EMT) plays a significant part in the occurrence and development of epithelial carcinoma, including endometrial adenocarcinoma. Recepteur d’origine nantais (RON) induces EMT and promotes proliferation, migration, and invasion in various epithelial-derived cancers, but its role in endometrial adenocarcinoma is still poorly studied. The purpose of this study is to verify the overexpression of RON in endometrial adenocarcinoma and to explore its specific roles. RON expression in tumor lesions was verified by immunohistochemical staining, HEC-1B cells were used to construct stable cell lines with RON overexpression or knockdown to investigate the effects of RON on the function of endometrial adenocarcinoma cells, and xenotransplantation experiment was carried out in nude mice to explore the effect of RON on the growth of endometrial adenocarcinoma in vivo. This study revealed that RON could promote the proliferation, migration, and invasion of HEC-1B cells and induce EMT, and these effects were regulated through the Smad pathway. RON overexpression could promote growth of endometrial adenocarcinoma cells in nude mice, while its inhibitor BMS777607 could restrict this role. RON played an important role in endometrial adenocarcinoma and had a potential to become a new therapeutic target for endometrial adenocarcinoma.


2021 ◽  
Vol 11 (6) ◽  
pp. 1129-1137
Author(s):  
Yuanyuan Liu ◽  
Chao He ◽  
Xin Li ◽  
Zewen Zhang ◽  
Ju Liu ◽  
...  

The epithelial-mesenchymal transition (EMT) of bronchial epithelial cells is a critical mechanism involved in transforming growth factor beta 1 (TGF-β1) induced asthma airway remodeling. Previous study has shown that interleukin 27 (IL-27) attenuates EMT in alveolar epithelial cells, but its effects on the BEAS-2B human bronchial epithelial cell line EMT remain unknown. Herein, we explored the effects of IL-27 on BEAS-2B EMT in vivo and in vitro. In the in vivo experiments, we found that IL-27 nose-drip therapy alleviated airway remodeling, increased the epithelial phenotypic marker epithelial-cadherin (E-cadherin), and decreased the mesenchymal phenotypic marker alpha-smooth muscle actin (α-SMA) compared with the asthmatic control group. We also found that IL-27 suppressed the signal transducer and activator of transcription (STAT3) in the lung tissue of asthmatic mice. in vitro, TGF-β1-induced EMT changes, including downregulation of E-cadherin and upregulation of α-SMA, were suppressed by IL-27 treatment. Additionally, STAT3 phosphorylation was activated by TGF-β1, whereas IL-27 inhibited the activation of TGF-β1 induced STAT3 phosphorylation. Our findings indicated that IL-27 could inhibit airway remodeling by attenuating bronchial epithelial cell EMT in vivo and in vitro. Therefore, IL-27 may be a beneficial therapeutic option targeting asthmatic airway remodeling.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Fengyuan Guo ◽  
Qingming Tang ◽  
Guangjin Chen ◽  
Jiwei Sun ◽  
Junyi Zhu ◽  
...  

Oral squamous cell carcinoma, one of the most prevalent cancer types in the world, has been confirmed under the influence of a key circadian gene, PER2, whose role has been identified in the development of some other types of cancers. However, the mechanism through which PER2 regulates the progress of OSCC remains largely unknown. In this study, we showed that besides the abnormal expression and subcellular localization of PER2 observed in OSCC tissues and cells as expected, these anomalous changes also existed in the adjacent noncancerous tissues, which was a novel finding in our research. The phase of PER2 rhythmic expression pattern in OSCC cells was later than that in oral keratinocytes in the protein level. In addition, we demonstrated that PER2 played as a resistant factor in the development of OSCC by upregulating TP53 and inhibiting epithelial-mesenchymal transition in vitro and in vivo. Taken together, our results identified that the development of OSCC is closely associated with PER2, the aberrant expression and subcellular localization of which facilitates the malignant progress.


2014 ◽  
Vol 26 (1) ◽  
pp. 212
Author(s):  
A. Lange-Consiglio ◽  
G. Accogli ◽  
F. Cremonesi ◽  
S. Desantis

Epithelial to mesenchymal transition (EMT) is the process by which epithelial cells dramatically alter their shape and motile behaviour as they differentiate into mesenchymal cells. The EMT and the reverse process, termed mesenchymal–epithelial transition, play central roles in embryogenesis. Gastrulation and neural crest formation are processes governed by EMT in amniotes. It is noteworthy that in placental mammals, the epithelial layer of amnion originates from the trophectoderm and it is continuous with the epiblast. On this basis, it is reasonable to speculate that some amniotic epithelial cells may escape the specification that accompanies gastrulation, and may retain some of the characteristics of epiblastic cells, such as pluripotency, behaving as stem cells that are able to preserve intrinsically the ability to transdifferentiate. Because it seems that malignant cells use the same mechanisms during the formation of tumours in vivo, the amniotic epithelial cells (AEC) could represent a good model to study in vitro this phenomenon that we observed to occur spontaneously in our culture conditions. The aim of this study was to characterise the glycoprotein pattern expressed in fresh or cryopreserved equine AEC, mesenchymal (AMC), and transdifferentiated cells by means of lectin histochemistry. AEC and AMC were cultured until passage (P) 3, while transdifferentiated cells at P1(EMT1) and P2 (EMT2). All cell lines were frozen for 1 month at –196°C in liquid nitrogen. The glycoanalysis was performed with a panel of twelve lectins to detect the glycans terminating with sialic acids (MAL II, SNA, PNA after sialidase digestion (K-s), K-s-DBA), galactose (PNA, RCA120, GSA I-B4,), N-acetylgalactosamine (DBA, HPA, SBA), N-acetylglucosamine (GSA II), fucose (UEA I, LTA), or with internal mannose (Con A). After freezing: 1) AEC exhibited decrease of binding sites for DBA, SBA, HPA, GSA II, and disappearance of GSA I-B4 and UEA I binders; 2) AMC displayed increase of SBA reactivity, decrease of K-s-PNA, HPA, GSA II staining, and absence of GSA I-B4 affinity; 3) EMT1 cells showed the appearance of K-s-DBA staining, the increase of K-s-PNA, RCA120, SBA, GSA I-B4, and UEA I reactivity, the decrease of MAL II, SNA, HPA, GSA II binders, and the disappearance of DBA and LTA binding sites; 4) EMT2 cells revealed the increase of K-s-PNA, GSA I-B4, UEA I affinity, the decrease of MAL II, SNA, RCA120, HPA, GSA II binders, and the lack of DBA, SBA, and LTA reactivity. In conclusion, this study demonstrates that the EMT induces changes in cell surface glycan profile of equine amniotic progenitor cells, and for the first time revealed that freezing modifies the lectin binding pattern of these cells. The observed glycan pattern modification may represent one aspect of the spontaneous complex process of EMT.


Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1676
Author(s):  
Monserrat Olea-Flores ◽  
Juan C. Juárez-Cruz ◽  
Miriam D. Zuñiga-Eulogio ◽  
Erika Acosta ◽  
Eduardo García-Rodríguez ◽  
...  

Leptin is a hormone secreted mainly by adipocytes; physiologically, it participates in the control of appetite and energy expenditure. However, it has also been linked to tumor progression in different epithelial cancers. In this review, we describe the effect of leptin on epithelial–mesenchymal transition (EMT) markers in different study models, including in vitro, in vivo, and patient studies and in various types of cancer, including breast, prostate, lung, and ovarian cancer. The different studies report that leptin promotes the expression of mesenchymal markers and a decrease in epithelial markers, in addition to promoting EMT-related processes such as cell migration and invasion and poor prognosis in patients with cancer. Finally, we report that leptin has the greatest biological relevance in EMT and tumor progression in breast, lung, prostate, esophageal, and ovarian cancer. This relationship could be due to the key role played by the enriched tumor microenvironment in adipose tissue. Together, these findings demonstrate that leptin is a key biomolecule that drives EMT and metastasis in cancer.


2019 ◽  
Vol 12 (595) ◽  
pp. eaav2041 ◽  
Author(s):  
Sreeharsha Gurrapu ◽  
Giulia Franzolin ◽  
Damon Fard ◽  
Massimo Accardo ◽  
Enzo Medico ◽  
...  

Semaphorins are a family of molecular signals that guide cell migration and are implicated in the regulation of cancer cells. In particular, transmembrane semaphorins are postulated to act as both ligands (“forward” mode) and signaling receptors (“reverse” mode); however, reverse semaphorin signaling in cancer is relatively less understood. Here, we identified a previously unknown function of transmembrane semaphorin 4C (Sema4C), acting in reverse mode, to elicit nonconventional TGF-β/BMP receptor activation and selective SMAD1/5 phosphorylation. Sema4C coimmunoprecipitated with TGFBRII and BMPR1, supporting its role as modifier of this pathway. Sema4C reverse signaling led to the increased abundance of ID1/3 transcriptional factors and to extensive reprogramming of gene expression, which suppressed the typical features of the epithelial-mesenchymal transition in invasive carcinoma cells. This phenotype was nevertheless coupled with burgeoning metastatic behavior in vivo, consistent with evidence that Sema4C expression correlates with metastatic progression in human breast cancers. Thus, Sema4C reverse signaling promoted SMAD1/5- and ID1/3-dependent gene expression reprogramming and phenotypic plasticity in invasive cancer cells.


2017 ◽  
Vol 24 (8) ◽  
pp. 1431-1442 ◽  
Author(s):  
Xiaoyun Chen ◽  
Wei Xiao ◽  
Weirong Chen ◽  
Xialin Liu ◽  
Mingxing Wu ◽  
...  

Abstract Fibrosis is a chronic process involving development and progression of multiple diseases in various organs and is responsible for almost half of all known deaths. Epithelial–mesenchymal transition (EMT) is the vital process in organ fibrosis. Lens is an elegant biological tool to investigate the fibrosis process because of its unique biological properties. Using gain- and loss-of-function assays, and different lens fibrosis models, here we demonstrated that microRNA (miR)-26a and miR-26b, members of the miR-26 family have key roles in EMT and fibrosis. They can significantly inhibit proliferation, migration, EMT of lens epithelial cells and lens fibrosis in vitro and in vivo. Interestingly, we revealed that the mechanisms of anti-EMT effects of miR-26a and -26b are via directly targeting Jagged-1 and suppressing Jagged-1/Notch signaling. Furthermore, we provided in vitro and in vivo evidence that Jagged-1/Notch signaling is activated in TGFβ2-stimulated EMT, and blockade of Notch signaling can reverse lens epithelial cells (LECs) EMT and lens fibrosis. Given the general involvement of EMT in most fibrotic diseases, cancer metastasis and recurrence, miR-26 family and Notch pathway may have therapeutic uses in treating fibrotic diseases and cancers.


Sign in / Sign up

Export Citation Format

Share Document