scholarly journals Pendrin Is a Novel In Vivo Downstream Target Gene of the TTF-1/Nkx-2.1 Homeodomain Transcription Factor in Differentiated Thyroid Cells

2005 ◽  
Vol 25 (22) ◽  
pp. 10171-10182 ◽  
Author(s):  
Monica Dentice ◽  
Cristina Luongo ◽  
Antonia Elefante ◽  
Raffaele Ambrosio ◽  
Salvatore Salzano ◽  
...  

ABSTRACT Thyroid transcription factor gene 1 (TTF-1) is a homeobox-containing gene involved in thyroid organogenesis. During early thyroid development, the homeobox gene Nkx-2.5 is expressed in thyroid precursor cells coincident with the appearance of TTF-1. The aim of this study was to investigate the molecular mechanisms underlying thyroid-specific gene expression. We show that the Nkx-2.5 C terminus interacts with the TTF-1 homeodomain and, moreover, that the expression of a dominant-negative Nkx-2.5 isoform (N188K) in thyroid cells reduces TTF-1-driven transcription by titrating TTF-1 away from its target DNA. This process reduced the expression of several thyroid-specific genes, including pendrin and thyroglobulin. Similarly, down-regulation of TTF-1 by RNA interference reduced the expression of both genes, whose promoters are sensitive to and directly associate with TTF-1 in the chromatin context. In conclusion, we demonstrate that pendrin and thyroglobulin are downstream targets in vivo of TTF-1, whose action is a prime factor in controlling thyroid differentiation in vivo.

2008 ◽  
Vol 41 (5) ◽  
pp. 379-388 ◽  
Author(s):  
Tina Di Palma ◽  
Tiziana de Cristofaro ◽  
Chiara D'Ambrosio ◽  
Dolores Del Prete ◽  
Andrea Scaloni ◽  
...  

Pax8 is a transcription factor that plays an important role in the regulation of genes that are exclusively expressed in differentiated thyroid cells. In the thyroid cell environment, evidence exists that Pax8 is part of a multiprotein complex in which its transcriptional activity may be modulated by specific co-factors. In an attempt to identify proteins that interact with Pax8, we performed pull-down experiments challenging the GST–Pax8 fusion protein with protein extracts prepared from the thyroid differentiated cell line PC Cl3. By this approach, we isolated a 113-kDa protein that is able to associate with Pax8, which was further identified by mass fingerprint experiments as poly(ADP-ribose) polymerase 1 (PARP1). To further confirm this interaction, we also showed that PARP1 can be co-immunoprecipitated with Pax8 in vivo from a thyroid cell extract. Gel shifts experiments demonstrated that PARP1 binding to Pax8 significantly inhibits Pax8 binding to DNA. Accordingly, we provide evidence that the functional outcome of such an interaction is a significant downregulation of Pax8 transcriptional activity. In the context of thyroid-specific gene transcription, our results suggest that PARP1 behaves as an important negative co-factor involved in the regulation of Pax8-dependent gene expression.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Shuaishuai Zhuo ◽  
Miaomiao Sun ◽  
Rumeng Bai ◽  
Die Lu ◽  
Shihao Di ◽  
...  

AbstractGastric cancer (GC) is one of the most common malignancies worldwide, but its molecular mechanisms remain unclear. Increasing evidence indicates that long non-coding RNAs (LncRNAs) play a pivotal role in various cancers recently. Our present study focused on exploring the function of long intergenic non-coding RNA 00473 (LINC00473) in GC. In this study, we found that LINC00473 expression was aberrantly increased in tumor tissues compared with the paired para-cancerous tissues. The expression of high LINC00473 in GC was notably correlated with a higher risk of lymphatic metastasis, a higher incidence of vascular cancer embolus, and advanced TNM stage. Further experiments showed that the overexpression of LINC00473 could promote the proliferation and metastasis of GC cells both in vitro and in vivo. The apoptosis of GC cells increased significantly by the decrease of LINC00473. Mechanistically, LINC00473 could sponge miR-16-5p in the cytoplasm and relieve its suppression of CCND2. Moreover, AQP3 was found to be a significant downstream target gene for LINC00473 through RNA transcriptome sequencing, as demonstrated by qRT-PCR and western blot. Overexpression of LINC00473 can partially reverse the effects of AQP3 decrease on GC proliferation and metastasis. LINC00473 regulated AQP3 expression through CREB was confirmed by western blot. Our research indicates that LINC00473/miR-16-5p/CCND2 axis plays a role in the proliferation of GC and modulates AQP3 to influence GC cell metastasis, making it a potential therapeutic target for GC.


2013 ◽  
Vol 40 (1) ◽  
pp. 43
Author(s):  
Xiao-Meng ZHAO ◽  
Cheng WANG ◽  
Xiao-Feng LI ◽  
Xiao-Ting ZHANG ◽  
Xi-Zhi LIU ◽  
...  

2019 ◽  
Vol 20 (6) ◽  
pp. 625-634 ◽  
Author(s):  
Xun Che ◽  
Wei Dai

AhR is an environmental response gene that mediates cellular responses to a variety of xenobiotic compounds that frequently function as AhR ligands. Many AhR ligands are classified as carcinogens or pro-carcinogens. Thus, AhR itself acts as a major mediator of the carcinogenic effect of many xenobiotics in vivo. In this concise review, mechanisms by which AhR trans-activates downstream target gene expression, modulates immune responses, and mediates malignant transformation and tumor development are discussed. Moreover, activation of AhR by post-translational modifications and crosstalk with other transcription factors or signaling pathways are also summarized.


2021 ◽  
Vol 49 (7) ◽  
pp. 3856-3875
Author(s):  
Marina Kulik ◽  
Melissa Bothe ◽  
Gözde Kibar ◽  
Alisa Fuchs ◽  
Stefanie Schöne ◽  
...  

Abstract The glucocorticoid (GR) and androgen (AR) receptors execute unique functions in vivo, yet have nearly identical DNA binding specificities. To identify mechanisms that facilitate functional diversification among these transcription factor paralogs, we studied them in an equivalent cellular context. Analysis of chromatin and sequence suggest that divergent binding, and corresponding gene regulation, are driven by different abilities of AR and GR to interact with relatively inaccessible chromatin. Divergent genomic binding patterns can also be the result of subtle differences in DNA binding preference between AR and GR. Furthermore, the sequence composition of large regions (>10 kb) surrounding selectively occupied binding sites differs significantly, indicating a role for the sequence environment in guiding AR and GR to distinct binding sites. The comparison of binding sites that are shared shows that the specificity paradox can also be resolved by differences in the events that occur downstream of receptor binding. Specifically, shared binding sites display receptor-specific enhancer activity, cofactor recruitment and changes in histone modifications. Genomic deletion of shared binding sites demonstrates their contribution to directing receptor-specific gene regulation. Together, these data suggest that differences in genomic occupancy as well as divergence in the events that occur downstream of receptor binding direct functional diversification among transcription factor paralogs.


2020 ◽  
Vol 11 (9) ◽  
Author(s):  
Olivia J. Marola ◽  
Stephanie B. Syc-Mazurek ◽  
Gareth R. Howell ◽  
Richard T. Libby

Abstract Glaucoma is a neurodegenerative disease characterized by loss of retinal ganglion cells (RGCs), the output neurons of the retina. Multiple lines of evidence show the endothelin (EDN, also known as ET) system is important in glaucomatous neurodegeneration. To date, the molecular mechanisms within RGCs driving EDN-induced RGC death have not been clarified. The pro-apoptotic transcription factor JUN (the canonical target of JNK signaling) and the endoplasmic reticulum stress effector and transcription factor DNA damage inducible transcript 3 (DDIT3, also known as CHOP) have been shown to act downstream of EDN receptors. Previous studies demonstrated that JUN and DDIT3 were important regulators of RGC death after glaucoma-relevant injures. Here, we characterized EDN insult in vivo and investigated the role of JUN and DDIT3 in EDN-induced RGC death. To accomplish this, EDN1 ligand was intravitreally injected into the eyes of wildtype, Six3-cre+Junfl/fl (Jun−/−), Ddit3 null (Ddit3−/−), and Ddit3−/−Jun−/− mice. Intravitreal EDN1 was sufficient to drive RGC death in vivo. EDN1 insult caused JUN activation in RGCs, and deletion of Jun from the neural retina attenuated RGC death after EDN insult. However, deletion of Ddit3 did not confer significant protection to RGCs after EDN1 insult. These results indicate that EDN caused RGC death via a JUN-dependent mechanism. In addition, EDN signaling is known to elicit potent vasoconstriction. JUN signaling was shown to drive neuronal death after ischemic insult. Therefore, the effects of intravitreal EDN1 on retinal vessel diameter and hypoxia were explored. Intravitreal EDN1 caused transient retinal vasoconstriction and regions of RGC and Müller glia hypoxia. Thus, it remains a possibility that EDN elicits a hypoxic insult to RGCs, causing apoptosis via JNK-JUN signaling. The importance of EDN-induced vasoconstriction and hypoxia in causing RGC death after EDN insult and in models of glaucoma requires further investigation.


2004 ◽  
Vol 16 (2) ◽  
pp. 87 ◽  
Author(s):  
Le Ann Blomberg ◽  
Kurt A. Zuelke

Functional genomics provides a powerful means for delving into the molecular mechanisms involved in pre-implantation development of porcine embryos. High rates of embryonic mortality (30%), following either natural mating or artificial insemination, emphasise the need to improve the efficiency of reproduction in the pig. The poor success rate of live offspring from in vitro-manipulated pig embryos also hampers efforts to generate transgenic animals for biotechnology applications. Previous analysis of differential gene expression has demonstrated stage-specific gene expression for in vivo-derived embryos and altered gene expression for in vitro-derived embryos. However, the methods used to date examine relatively few genes simultaneously and, thus, provide an incomplete glimpse of the physiological role of these genes during embryogenesis. The present review will focus on two aspects of applying functional genomics research strategies for analysing the expression of genes during elongation of pig embryos between gestational day (D) 11 and D12. First, we compare and contrast current methodologies that are being used for gene discovery and expression analysis during pig embryo development. Second, we establish a paradigm for applying serial analysis of gene expression as a functional genomics tool to obtain preliminary information essential for discovering the physiological mechanisms by which distinct embryonic phenotypes are derived.


1999 ◽  
Vol 19 (11) ◽  
pp. 7589-7599 ◽  
Author(s):  
Mariano Ubeda ◽  
Mario Vallejo ◽  
Joel F. Habener

ABSTRACT The transcription factor CHOP (C/EBP homologous protein 10) is a bZIP protein induced by a variety of stimuli that evoke cellular stress responses and has been shown to arrest cell growth and to promote programmed cell death. CHOP cannot form homodimers but forms stable heterodimers with the C/EBP family of activating transcription factors. Although initially characterized as a dominant negative inhibitor of C/EBPs in the activation of gene transcription, CHOP-C/EBP can activate certain target genes. Here we show that CHOP interacts with members of the immediate-early response, growth-promoting AP-1 transcription factor family, JunD, c-Jun, and c-Fos, to activate promoter elements in the somatostatin, JunD, and collagenase genes. The leucine zipper dimerization domain is required for interactions with AP-1 proteins and transactivation of transcription. Analyses by electrophoretic mobility shift assays and by an in vivo mammalian two-hybrid system for protein-protein interactions indicate that CHOP interacts with AP-1 proteins inside cells and suggest that it is recruited to the AP-1 complex by a tethering mechanism rather than by direct binding of DNA. Thus, CHOP not only is a negative or a positive regulator of C/EBP target genes but also, when tethered to AP-1 factors, can activate AP-1 target genes. These findings establish the existence of a new mechanism by which CHOP regulates gene expression when cells are exposed to cellular stress.


Author(s):  
Lijun Wang ◽  
Xiaojun Wang ◽  
Pengwei Yan ◽  
Yatian Liu ◽  
Xuesong Jiang

To improve the survival rate and cure rate of patients, it is necessary to find a new treatment scheme according to the molecular composition of (ESCC) in esophageal squamous cell carcinoma. Long non-coding RNAs (lncRNAs) regulate the progression of ESCC by various pathophysiological pathways. We explored the possible function of the lncRNA LINC00261 (LINC00261) on cisplatin (DDP) resistance of ESCC and its relative molecular mechanisms. In the study, we found that LINC00261 was downregulated in ESCC tissues, cell lines, and DDP-resistant ESCC patients. Besides, overexpression of LINC00261 not only inhibited cell proliferation, and DDP resistance but also promotes cell apoptosis. Further mechanistic research showed that LINC00261 sponged miR-545-3p which was negatively correlated with the expression of LINC00261. In addition, functional experiments revealed that upregulation of miR-766-5p promoted proliferation and enhanced DDP resistance. Subsequently, MT1M was testified to be the downstream target gene of miR-545-3p. Rescue experiments revealed that overexpression of MT1M largely restores miR-545-3p mimics-mediated function on ESCC progression. Our results demonstrate that the LINC00261 suppressed the DDP resistance of ESCC through miR-545-3p/MT1M axis.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Lin Zhou ◽  
Qing Chen ◽  
Jie Wu ◽  
Jian Yang ◽  
Huancai Yin ◽  
...  

Although colorectal cancer (CRC) is common, there is a paucity of information regarding its molecular pathogenesis. Studies have shown that miRNAs play pivotal roles in the development and progression of CRC. There is a need to further investigate the biological functions of miRNAs in CRC. In particular, it has been reported that miR-942-5p exhibits tumor-suppressive properties. Thus, we analyzed the functional significance of miR-942-5p in CRC and the underlying molecular mechanisms. We found that miR-942-5p was downregulated in CRC tissues and cells. Cell Counting Kit-8, EdU, and colony formation assays revealed that the overexpression of miR-942-5p by mimics inhibited the proliferation of CRC cells. Use of the miR-942-5p inhibitor effectively enhanced the proliferative potential of CRC cells. Further, in vivo xenograft experiments confirmed these results. Increased expression of miR-942-5p suppressed the invasion, migration, and epithelial-mesenchymal transition of CRC cell lines, while decreased miR-942-5p expression had the opposite effect. CCBE1, a secretory molecule for lymphangiogenesis, was established as a downstream target of miR-942-5p, and its expression was inversely correlated with the expression of miR-942-5p in CRC cells. Additionally, cotransfection of the miR-942-5p inhibitor with si-CCBE1 into CRC cells reversed the effects induced by miR-942-5p overexpression. In conclusion, we confirmed that miR-942-5p exerts oncogenic actions in CRC by targeting CCBE1 and identified miR-942-5p as a potential clinical biomarker for CRC diagnosis and therapy.


Sign in / Sign up

Export Citation Format

Share Document