scholarly journals Transcriptome RNA Sequencing Data Set of Gene Expression in Moraxella catarrhalis On- and Off-Phase Variants of the Type III DNA Methyltransferase ModM3

2020 ◽  
Vol 9 (14) ◽  
Author(s):  
Luke V. Blakeway ◽  
Aimee Tan ◽  
Ian R. Peak ◽  
John M. Atack ◽  
Kate L. Seib

Moraxella catarrhalis is a leading bacterial cause of otitis media and exacerbations of chronic obstructive pulmonary disease. Here, we announce a transcriptome RNA sequencing data set detailing global gene expression in two M. catarrhalis CCRI-195ME variants with expression of the DNA methyltransferase ModM3 phase varied either on or off.

2020 ◽  
Vol 9 (12) ◽  
Author(s):  
Luke V. Blakeway ◽  
Aimee Tan ◽  
Ian R. Peak ◽  
John M. Atack ◽  
Kate L. Seib

Moraxella catarrhalis is a leading cause of otitis media and exacerbations of chronic obstructive pulmonary disease; however, its response to iron starvation during infection is not completely understood. Here, we announce a sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) data set describing the differential expression of the M. catarrhalis CCRI-195ME proteome under iron-restricted versus iron-replete conditions.


2021 ◽  
Vol 10 (19) ◽  
Author(s):  
Olabisi Ojo ◽  
Derrick Scott ◽  
Bamidele Iwalokun ◽  
Babatunde Odetoyin ◽  
Anne Grove

ABSTRACT Escherichia coli laboratory strains remain instrumental for the development of tools and techniques in molecular microbiology. The transcriptional regulator SlyA, associated with host-derived oxidative stress, antibiotic resistance, and virulence, is prominent in Enterobacteriaceae. Here, we announce a transcriptome data set detailing the global gene expression in E. coli BW25113 and its slyA mutant.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3766-3766
Author(s):  
Mark Wunderlich ◽  
Jing Chen ◽  
Eric O'Brien ◽  
Nicole Manning ◽  
Christina Sexton ◽  
...  

Therapies for pediatric acute myeloid leukemia (AML) remain unsatisfactory and generally do not incorporate molecularly-targeted agents aside from FLT3 inhibitors outside of the relapse setting. Patient-derived xenograft (PDX) models of AML are increasingly accessible for the preclinical evaluation of targeted therapies, though the degree to which these systems recapitulate the disease state as found in patients has not been well defined for AML. Gene expression profiling of patient blasts has been successfully used to discriminate distinct subtypes of AML, to uncover sub-type specific vulnerabilities, and to predict response to therapy and outcomes. We sought to systematically examine PDX models of pediatric AML for their ability to replicate global gene expression patterns and preserve mutational signatures found in patients. In addition, we conducted in-depth bioinformatic analyses of samples with cryptic CBA2T3-GLIS2 fusion generated by the inv(16)(p13.3q24.3) for identification of potential novel targeted therapies. We performed detailed analyses of RNA sequencing data from a diverse series of 24 pediatric AML PDX models established from samples obtained from patients with relapse and refractory disease. Initially we compared our PDX data against 49 selected relapse and refractory patient sample data files found in the NCI TARGET dataset of pediatric AML. When applying unsupervised hierarchical clustering to the PDX samples, we found that clustering was associated with MLL status. Clustering of the combined sets of samples by MLL status showed integration of samples according to mutation profile, regardless of data source (PDX or patient). The expression levels of all detectable transcripts were highly conserved between PDX and patient MLL-r samples. Separate analysis of each dataset yielded MLL specific gene lists that included a subset of overlapping genes which may point to a unique relapse and refractory pediatric MLL-r signature. This list contains several interesting new targets for further study. A subset of 12 PDX models were compared directly to the matched patient sample from which they were established. This analysis revealed strong similarity, with each PDX most closely related to its matched patient sample, suggesting retention of sample-specific gene expression in immune deficient mice. We set up our PDX models in NSG mice with transgenic expression of human myelo-supportive cytokines SCF, GM-CSF, and IL-3 in order to promote the most efficient and robust engraftment of precious patient material. In order to detect any skewing effects due to the host mouse strain, we compared NSGS PDX RNA sequencing data to 10 matched NSG PDX models. This comparison revealed consistent differences in only 9 transcripts, which were almost entirely related to increased JAK/STAT signaling and macrophage activation pathways in NSGS mice relative to NSG mice. Interestingly, during this analysis we observed a distinct PCA-driven clustering of a pair of PDX samples with previously clinically unidentified driver mutations. Reanalysis of the RNA sequencing data revealed evidence of a cryptic GLIS2 rearrangement (found in ~1% of pediatric AML cases) as the driver mutation, which was subsequently confirmed by RT-PCR in both samples. The unique CBFA2T3/GLIS2 RNA signature was mined to guide the composition of a focused 75-molecule in vitro drug screen against ex vivo PDX samples with an emphasis on the SHH, WNT, and BCL2 pathways. This screen identified the Wnt-C59 PORCN inhibitor as having specific activity against CBFA2T3/GLIS2+ AMLs. Further testing of C-59 in combinatorial studies revealed enhanced effects with the addition of the BCL2 inhibitor, venetoclax. In vivo experiments are currently underway to determine the pre-clinical efficacy of this novel combination. In summary, we found highly significant fidelity of gene expression in PDX models of relapse and refractory pediatric AML. Analysis of this dataset has led to several insights, including potential targeted therapies, highlighting how this system could be a valuable tool for discovery of novel targeted therapies, especially for very rare, distinct subtypes of disease. Disclosures Perentesis: Kurome Therapeutics: Consultancy.


2020 ◽  
Vol 9 (35) ◽  
Author(s):  
Theodor Chitlaru ◽  
Inbar Cohen-Gihon ◽  
Ofir Israeli ◽  
Uri Elia ◽  
Galia Zaide ◽  
...  

ABSTRACT The high-temperature requirement chaperone/protease (HtrA) is involved in the stress response of the anthrax-causing pathogen Bacillus anthracis. Resilience to oxidative stress is essential for the manifestation of B. anthracis pathogenicity. Here, we announce transcriptome data sets detailing global gene expression in B. anthracis wild-type and htrA-disrupted strains following H2O2-induced oxidative stress.


2017 ◽  
Vol 5 (21) ◽  
Author(s):  
Aimee Tan ◽  
Luke V. Blakeway ◽  
Lauren O. Bakaletz ◽  
Matthew Boitano ◽  
Tyson A. Clark ◽  
...  

ABSTRACT Moraxella catarrhalis is an important bacterial pathogen that causes otitis media and exacerbations of chronic obstructive pulmonary disease. Here, we report the complete genome sequence of M. catarrhalis strain CCRI-195ME, which contains the phase-variable epigenetic regulator ModM3.


2018 ◽  
Author(s):  
Felix Brechtmann ◽  
Agnė Matusevičiūtė ◽  
Christian Mertes ◽  
Vicente A Yépez ◽  
Žiga Avsec ◽  
...  

AbstractRNA sequencing (RNA-seq) is gaining popularity as a complementary assay to genome sequencing for precisely identifying the molecular causes of rare disorders. A powerful approach is to identify aberrant gene expression levels as potential pathogenic events. However, existing methods for detecting aberrant read counts in RNA-seq data either lack assessments of statistical significance, so that establishing cutoffs is arbitrary, or rely on subjective manual corrections for confounders. Here, we describe OUTRIDER (OUTlier in RNA-seq fInDER), an algorithm developed to address these issues. The algorithm uses an autoencoder to model read count expectations according to the co-variation among genes resulting from technical, environmental, or common genetic variations. Given these expectations, the RNA-seq read counts are assumed to follow a negative binomial distribution with a gene-specific dispersion. Outliers are then identified as read counts that significantly deviate from this distribution. The model is automatically fitted to achieve the best correction of artificially corrupted data. Precision–recall analyses using simulated outlier read counts demonstrated the importance of combining correction for co-variation and significance-based thresholds. OUTRIDER is open source and includes functions for filtering out genes not expressed in a data set, for identifying outlier samples with too many aberrantly expressed genes, and for the P-value-based detection of aberrant gene expression, with false discovery rate adjustment. Overall, OUTRIDER provides a computationally fast and scalable end-to-end solution for identifying aberrantly expressed genes, suitable for use by rare disease diagnostic platforms.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8192 ◽  
Author(s):  
Gökhan Karakülah ◽  
Nazmiye Arslan ◽  
Cihangir Yandım ◽  
Aslı Suner

Introduction Recent studies highlight the crucial regulatory roles of transposable elements (TEs) on proximal gene expression in distinct biological contexts such as disease and development. However, computational tools extracting potential TE –proximal gene expression associations from RNA-sequencing data are still missing. Implementation Herein, we developed a novel R package, using a linear regression model, for studying the potential influence of TE species on proximal gene expression from a given RNA-sequencing data set. Our R package, namely TEffectR, makes use of publicly available RepeatMasker TE and Ensembl gene annotations as well as several functions of other R-packages. It calculates total read counts of TEs from sorted and indexed genome aligned BAM files provided by the user, and determines statistically significant relations between TE expression and the transcription of nearby genes under diverse biological conditions. Availability TEffectR is freely available at https://github.com/karakulahg/TEffectR along with a handy tutorial as exemplified by the analysis of RNA-sequencing data including normal and tumour tissue specimens obtained from breast cancer patients.


2019 ◽  
Vol 8 (29) ◽  
Author(s):  
John M. Atack ◽  
Timothy F. Murphy ◽  
Melinda M. Pettigrew ◽  
Kate L. Seib ◽  
Michael P. Jennings

Nontypeable Haemophilus influenzae (NTHi) is a major bacterial cause of exacerbations in chronic obstructive pulmonary disease (COPD). Here, we report high-depth coverage transcriptome sequencing (RNA-seq) data from two NTHi strains, each encoding a different phase-variable methyltransferase. modA phase variation results in gene expression differences. These data will serve as an important resource for future studies.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Greg Tram ◽  
William P. Klare ◽  
Joel A. Cain ◽  
Basem Mourad ◽  
Stuart J. Cordwell ◽  
...  

Campylobacter jejuni is a foodborne pathogen and an important contributor to gastroenteritis in humans. C. jejuni readily forms biofilms which may play a role in the transmission of the pathogen from animals to humans. Herein, we present RNA sequencing data investigating differential gene expression in biofilm and planktonic C. jejuni. These data provide insight into pathways which may be important to biofilm formation in this organism.


2020 ◽  
Author(s):  
Guo Nan Yin ◽  
Shuguang Piao ◽  
Zhiyong Liu ◽  
Lei Wang ◽  
Jiyeon Ock ◽  
...  

Abstract BackgroundPeyronie’s disease (PD) is a severe fibrotic disease of the tunica albuginea that causes penis curvature and leads to penile pain, deformity, and erectile dysfunction. The role of pericytes in the pathogenesis of fibrosis has recently been determined. Extracellular vesicle (EV)-mimetic nanovesicles (NVs) have attracted attention regarding intercellular communication between cells in the field of fibrosis. However, the global gene expression of pericyte-derived EV-mimetic NVs (PC-NVs) in regulating fibrosis remains unknown. Here, we used RNA-sequencing technology to investigate the potential target genes regulated by PC-NVs in primary fibroblasts derived from human PD plaque. MethodsHuman primary fibroblasts derived from normal and PD patients was cultured and treated with cavernosum pericytes isolated extracellular vesicle (EV)-mimetic nanovesicles (NVs). A global gene expression RNA-sequencing assay was performed on normal fibroblasts, PD fibroblasts, and PD fibroblasts treated with PC-NVs. Reverse transcription polymerase chain reaction (RT-PCR) was used for sequencing data validation. ResultsA total of 4135 genes showed significantly differential expression in the normal fibroblasts, PD fibroblasts, and PD fibroblasts treated with PC-NVs. However, only 91 contra-regulated genes were detected among the three libraries. Furthermore, 20 contra-regulated genes were selected and 11 showed consistent changes in the RNA-sequencing assay, which were validated by RT-PCR. ConclusionThe gene expression profiling results suggested that these validated genes may be good targets for understanding potential mechanisms and conducting molecular studies into PD.


Sign in / Sign up

Export Citation Format

Share Document