scholarly journals Recombinant Zika Virus Subunits Are Immunogenic and Efficacious in Mice

mSphere ◽  
2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Albert To ◽  
Liana O. Medina ◽  
Kenji O. Mfuh ◽  
Michael M. Lieberman ◽  
Teri Ann S. Wong ◽  
...  

The recent outbreaks of Zika virus (ZIKV) infection in French Polynesia, the Caribbean, and the Americas have highlighted the severe neuropathological sequelae that such an infection may cause. The development of a safe, effective ZIKV vaccine is critical for several reasons: (i) the difficulty in diagnosing an active infection due to common nonspecific symptoms, (ii) the lack of a specific antiviral therapy, and (iii) the potentially devastating pathological effects ofin uteroinfection. Moreover, a vaccine with an excellent safety profile, such as a nonreplicating, noninfectious vaccine, would be ideal for high-risk people (e.g., pregnant women, immunocompromised patients, and elderly individuals). This report describes the development of a recombinant subunit protein vaccine candidate derived from stably transformed insect cells expressing the ZIKV envelope proteinin vitro, the primary antigen to which effective virus-neutralizing antibodies are engendered by immunized animals for several other flaviviruses; the vaccine candidate elicits effective virus-neutralizing antibodies against ZIKV and provides protection against ZIKV infection in mice.

Vaccines ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 72 ◽  
Author(s):  
Gustavo Cabral-Miranda ◽  
Stephanie M. Lim ◽  
Mona O. Mohsen ◽  
Ilya V. Pobelov ◽  
Elisa S. Roesti ◽  
...  

Zika virus (ZIKV) is a flavivirus similar to Dengue virus (DENV) in terms of transmission and clinical manifestations, and usually both viruses are found to co-circulate. ZIKV is usually transmitted by mosquitoes bites, but may also be transmitted by blood transfusion, via the maternal–foetal route, and sexually. After 2015, when the most extensive outbreak of ZIKV had occurred in Brazil and subsequently spread throughout the rest of South America, it became evident that ZIKV infection during the first trimester of pregnancy was associated with microcephaly and other neurological complications in newborns. As a result, the development of a vaccine against ZIKV became an urgent goal. A major issue with DENV vaccines, and therefore likely also with ZIKV vaccines, is the induction of antibodies that fail to neutralize the virus properly and cause antibody-dependent enhancement (ADE) of the infection instead. It has previously been shown that antibodies against the third domain of the envelope protein (EDIII) induces optimally neutralizing antibodies with no evidence for ADE for other viral strains. Therefore, we generated a ZIKV vaccine based on the EDIII domain displayed on the immunologically optimized Cucumber mosaic virus (CuMVtt) derived virus-like particles (VLPs) formulated in dioleoyl phosphatidylserine (DOPS) as adjuvant. The vaccine induced high levels of specific IgG after a single injection. The antibodies were able to neutralise ZIKV without enhancing infection by DENV in vitro. Thus, the here described vaccine based on EDIII displayed on VLPs was able to stimulate production of antibodies specifically neutralizing ZIKV without potentially enhancing disease caused by DENV.


Vaccines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 307 ◽  
Author(s):  
César López-Camacho ◽  
Giuditta De Lorenzo ◽  
Jose Luis Slon-Campos ◽  
Stuart Dowall ◽  
Peter Abbink ◽  
...  

The flavivirus envelope protein domain III (EDIII) was an effective immunogen against dengue virus (DENV) and other related flaviviruses. Whether this can be applied to the Zika virus (ZIKV) vaccinology remains an open question. Here, we tested the efficacy of ZIKV-EDIII against ZIKV infection, using several vaccine platforms that present the antigen in various ways. We provide data demonstrating that mice vaccinated with a ZIKV-EDIII as DNA or protein-based vaccines failed to raise fully neutralizing antibodies and did not control viremia, following a ZIKV challenge, despite eliciting robust antibody responses. Furthermore, we showed that ZIKV-EDIII encoded in replication-deficient Chimpanzee adenovirus (ChAdOx1-EDIII) elicited anti-ZIKV envelope antibodies in vaccinated mice but also provided limited protection against ZIKV in two physiologically different mouse challenge models. Taken together, our data indicate that contrary to what was shown for other flaviviruses like the dengue virus, which has close similarities with ZIKV-EDIII, this antigen might not be a suitable vaccine candidate for the correct induction of protective immune responses against ZIKV.


Viruses ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 795 ◽  
Author(s):  
Erika R. Schwarz ◽  
Malgorzata A. Pozor ◽  
Ruiyu Pu ◽  
Kelli L. Barr ◽  
Sarah E. Beachboard ◽  
...  

Zika virus (ZIKV) is a vertically and sexually transmissible virus resulting in severe congenital malformation. The goal of this study was to develop an ovine model of ZIKV infection. Between 28–35 days gestation (DG), four pregnant animals were infected with two doses of 6 × 106 PFU of ZIKV; four control animals received PBS. Animals were evaluated for 45 days (D) post-infection (PI) and necropsies were performed. Viral RNA was detected in infected ewe peripheral blood mononuclear cells (PBMC) during the first week PI; however, all fluids and tissues were negative upon culture. Anti-ZIKV IgM (1:400) and neutralizing antibodies were detected in all infected animals. Clinical disease, virus, or ZIKV antibodies were not detected in control ewes. After two weeks PI, fetal loss occurred in two infected animals, and at necropsy, three infected animals had placental petechiation and ecchymosis and one had hydramnion. Fetal morphometrics revealed smaller cranial circumference to crown-rump length ratios (p < 0.001) and relative brain weights (p = 0.038) in fetuses of infected animals compared with control fetuses. Immunophenotyping indicated an increase in B cells (p = 0.012) in infected sheep. Additionally, in vitro experiments using both adult and fetal cell lines demonstrated that ovine cells are highly permissive to ZIKV infection. In conclusion, ZIKV infection of pregnant sheep results in a change in fetal growth and gestational outcomes.


2022 ◽  
Author(s):  
Abhishek Phatarphekar ◽  
GEC Vidyadhar Reddy ◽  
Abhiram Gokhale ◽  
Gopala Karanam ◽  
Pushpa Kuchroo ◽  
...  

The COVID-19 pandemic has spurred an unprecedented movement to develop safe and effective vaccines against the SARS-CoV-2 virus to immunize the global population. The first set of vaccine candidates that received emergency use authorization targeted the spike (S) glycoprotein of the SARS-CoV-2 virus that enables virus entry into cells via the receptor binding domain (RBD). Recently, multiple variants of SARS-CoV-2 have emerged with mutations in S protein and the ability to evade neutralizing antibodies in vaccinated individuals. We have developed a dual RBD and nucleocapsid (N) subunit protein vaccine candidate named RelCoVax® through heterologous expression in mammalian cells (RBD) and E. coli (N). The RelCoVax® formulation containing a combination of aluminum hydroxide (alum) and a synthetic CpG oligonucleotide as adjuvants elicited high antibody titers against RBD and N proteins in mice after a prime and boost dose regimen administered 2 weeks apart. The vaccine also stimulated cellular immune responses with a potential Th1 bias as evidenced by increased IFN-γ release by splenocytes from immunized mice upon antigen exposure particularly N protein. Finally, the serum of mice immunized with RelCoVax® demonstrated the ability to neutralize two different SARS-CoV-2 viral strains in vitro including the Delta strain that has become dominant in many regions of the world and can evade vaccine induced neutralizing antibodies. These results warrant further evaluation of RelCoVax® through advanced studies and contribute towards enhancing our understanding of multicomponent subunit vaccine candidates against SARS-CoV-2.


Viruses ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 91
Author(s):  
Verena Schultz ◽  
Stephanie L. Cumberworth ◽  
Quan Gu ◽  
Natasha Johnson ◽  
Claire L. Donald ◽  
...  

Understanding how Zika virus (Flaviviridae; ZIKV) affects neural cells is paramount in comprehending pathologies associated with infection. Whilst the effects of ZIKV in neural development are well documented, impact on the adult nervous system remains obscure. Here, we investigated the effects of ZIKV infection in established mature myelinated central nervous system (CNS) cultures. Infection incurred damage to myelinated fibers, with ZIKV-positive cells appearing when myelin damage was first detected as well as axonal pathology, suggesting the latter was a consequence of oligodendroglia infection. Transcriptome analysis revealed host factors that were upregulated during ZIKV infection. One such factor, CCL5, was validated in vitro as inhibiting myelination. Transferred UV-inactivated media from infected cultures did not damage myelin and axons, suggesting that viral replication is necessary to induce the observed effects. These data show that ZIKV infection affects CNS cells even after myelination—which is critical for saltatory conduction and neuronal function—has taken place. Understanding the targets of this virus across developmental stages including the mature CNS, and the subsequent effects of infection of cell types, is necessary to understand effective time frames for therapeutic intervention.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1807
Author(s):  
Eri Nakayama ◽  
Yasuhiro Kawai ◽  
Satoshi Taniguchi ◽  
Jessamine E. Hazlewood ◽  
Ken-ichi Shibasaki ◽  
...  

Zika virus (ZIKV) infection during pregnancy causes a wide spectrum of congenital abnormalities and postnatal developmental sequelae such as fetal loss, intrauterine growth restriction (IUGR), microcephaly, or motor and neurodevelopmental disorders. Here, we investigated whether a mouse pregnancy model recapitulated a wide range of symptoms after congenital ZIKV infection, and whether the embryonic age of congenital infection changed the fetal or postnatal outcomes. Infection with ZIKV strain PRVABC59 from embryonic day 6.5 (E6.5) to E8.5, corresponding to the mid-first trimester in humans, caused fetal death, fetal resorption, or severe IUGR, whereas infection from E9.5 to E14.5, corresponding to the late-first to second trimester in humans, caused stillbirth, neonatal death, microcephaly, and postnatal growth deficiency. Furthermore, 4-week-old offspring born to dams infected at E12.5 showed abnormalities in neuropsychiatric state, motor behavior, autonomic function, or reflex and sensory function. Thus, our model recapitulated the multiple symptoms seen in human cases, and the embryonic age of congenital infection was one of the determinant factors of offspring outcomes in mice. Furthermore, maternal neutralizing antibodies protected the offspring from neonatal death after congenital infection at E9.5, suggesting that neonatal death in our model could serve as criteria for screening of vaccine candidates.


2018 ◽  
Author(s):  
Anna S. Jaeger ◽  
Reyes A. Murreita ◽  
Lea R. Goren ◽  
Chelsea M. Crooks ◽  
Ryan V. Moriarty ◽  
...  

AbstractCongenital Zika virus (ZIKV) infection was first linked to birth defects during the American outbreak 1–3. It has been proposed that mutations unique to the Asian/American-genotype explain, at least in part, the ability of Asian/American ZIKV to cause congenital Zika syndrome (CZS) 4,5. Recent studies identified mutations in ZIKV infecting humans that arose coincident with the outbreak in French Polynesia and were stably maintained during subsequent spread to the Americas 5. Here we show that African ZIKV can infect and harm fetuses and that the S139N mutation that has been associated with the American outbreak is not essential for fetal harm. Our findings, in a vertical transmission mouse model, suggest that ZIKV will remain a threat to pregnant women for the foreseeable future, including in Africa, southeast Asia, and the Americas. Additional research is needed to better understand the risks associated with ZIKV infection during pregnancy, both in areas where the virus is newly endemic and where it has been circulating for decades.


Author(s):  
Felix G. Delgado ◽  
Karina I. Torres ◽  
Jaime E. Castellanos ◽  
Consuelo Romero-Sánchez ◽  
Etienne Simon-Lorière ◽  
...  

The high level of dengue virus (DENV) seroprevalence in areas where Zika virus (ZIKV) is circulating and the cross-reactivity between these two viruses have raised concerns on the risk of increased ZIKV disease severity for patients with a history of previous DENV infection. To determine the role of DENV pre-immunity in ZIKV infection, we analysed the T and B cell responses against ZIKV in donors with or without previous DENV infection. Using PBMCs from donors living in an endemic area in Colombia, we have identified, by interferon (IFN)-&gamma; enzyme-linked immunospot (ELISPOT) assay, most of the immunodominant ZIKV T-cell epitopes in the non-structural proteins NS1, NS3 and NS5. Analyses of the T and B-cell responses in the same donors revealed a stronger T-cell response against peptides conserved between DENV and ZIKV, with a higher level of ZIKV-neutralizing antibodies in DENV-immune donors, in comparison with DENV-na&iuml;ve donors. Strikingly, the potential for antibody mediated enhancement of ZIKV infection was reduced in donors with sequential DENV and ZIKV infection in comparison with donors with DENV infection only. Altogether, these data suggest that individuals with DENV immunity present improved immune responses against ZIKV.


2021 ◽  
Author(s):  
Elizabeth E. McCarthy ◽  
Pamela M. Odorizzi ◽  
Emma Lutz ◽  
Carolyn P. Smullin ◽  
Iliana Tenvooren ◽  
...  

Although the formation of a durable neutralizing antibody response after an acute viral infection is a key component of protective immunity, little is known about why some individuals generate high versus low neutralizing antibody titers to infection or vaccination. Infection with Zika virus (ZIKV) during pregnancy can cause devastating fetal outcomes, and efforts to understand natural immunity to this infection are essential for optimizing vaccine design. In this study, we leveraged the high-dimensional single-cell profiling capacity of mass cytometry (CyTOF) to deeply characterize the cellular immune response to acute and convalescent ZIKV infection in a cohort of blood donors in Puerto Rico incidentally found to be viremic during the 2015-2016 epidemic in the Americas. During acute ZIKV infection, we identified widely coordinated responses across innate and adaptive immune cell lineages. High frequencies of multiple activated innate immune subsets, as well as activated follicular helper CD4+ T cells and proliferating CD27-IgD- B cells, during acute infection were associated with high titers of ZIKV neutralizing antibodies at 6 months post-infection. On the other hand, low titers of ZIKV neutralizing antibodies were associated with immune features that suggested a cytotoxic-skewed immune "set-point." Our study offers insight into the cellular coordination of immune responses and identifies candidate cellular biomarkers that may offer predictive value in vaccine efficacy trials for ZIKV and other acute viral infections aimed at inducing high titers of neutralizing antibodies.


2021 ◽  
Author(s):  
Catarina Sabino ◽  
Daniela Bender ◽  
Marie-Luise Herrlein ◽  
Eberhard Hildt

Zika virus (ZIKV) is a flavivirus well-known for the epidemic in the Americas in 2015-2016, where microcephaly in newborns and other neurological complications were connected to ZIKV infection. Many aspects of the viral life cycle, including binding and entry into the host cell, are still enigmatic. Based on the observation that CHO cells lack the expression of EGFR and are not permissive for various ZIKV strains, the relevance of EGFR for the viral life cycle was analyzed. Infection of A549 cells by ZIKV leads to a rapid internalization of EGFR that colocalizes with the endosomal marker EEA1. Moreover, the infection by different ZIKV strains is associated with an activation of EGFR and subsequent activation of the MAPK/ERK signaling cascade. However, treatment of the cells with MβCD, which on the one hand leads to an activation of EGFR but on the other hand prevents EGFR internalization, impairs ZIKV infection. Specific inhibition of EGFR or of the RAS-RAF-MEK-ERK signal transduction cascade hinders ZIKV infection by inhibition of ZIKV entry. In accordance to this, knockout of EGFR expression impedes ZIKV entry. In case of an already established infection, inhibition of EGFR or of downstream signaling does not affect viral replication. Taken together, these data demonstrate the relevance of EGFR in the early stages of ZIKV infection and identify EGFR as a target for antiviral strategies. Importance These data deepen the knowledge about the ZIKV infection process and demonstrate the relevance of EGFR for ZIKV entry. In light of the fact that a variety of specific and efficient inhibitors of EGFR and of EGFR-dependent signaling were developed and licensed, repurposing of these substances could be a helpful tool to prevent the spreading of ZIKV infection in an epidemic outbreak.


Sign in / Sign up

Export Citation Format

Share Document