scholarly journals Zonal Soil Type Determines Soil Microbial Responses to Maize Cropping and Fertilization

mSystems ◽  
2016 ◽  
Vol 1 (4) ◽  
Author(s):  
Mengxin Zhao ◽  
Bo Sun ◽  
Linwei Wu ◽  
Qun Gao ◽  
Feng Wang ◽  
...  

ABSTRACT Microbial communities are essential drivers of soil functional processes such as nitrification and heterotrophic respiration. Although there is initial evidence revealing the importance of soil type in shaping microbial communities, there has been no in-depth, comprehensive survey to robustly establish it as a major determinant of microbial community composition, functional gene structure, or ecosystem functioning. We examined bacterial and fungal community structures using Illumina sequencing, microbial functional genes using GeoChip, microbial biomass using phospholipid fatty acid analysis, as well as functional processes of soil nitrification potential and CO2 efflux. We demonstrated the critical role of soil type in determining microbial responses to land use changes at the continental level. Our findings underscore the inherent difficulty in generalizing ecosystem responses across landscapes and suggest that assessments of community feedback must take soil types into consideration. Soil types heavily influence ecological dynamics. It remains controversial to what extent soil types shape microbial responses to land management changes, largely due to lack of in-depth comparison across various soil types. Here, we collected samples from three major zonal soil types spanning from cold temperate to subtropical climate zones. We examined bacterial and fungal community structures, as well as microbial functional genes. Different soil types had distinct microbial biomass levels and community compositions. Five years of maize cropping (growing corn or maize) changed the bacterial community composition of the Ultisol soil type and the fungal composition of the Mollisol soil type but had little effect on the microbial composition of the Inceptisol soil type. Meanwhile, 5 years of fertilization resulted in soil acidification. Microbial compositions of the Mollisol and Ultisol, but not the Inceptisol, were changed and correlated (P < 0.05) with soil pH. These results demonstrated the critical role of soil type in determining microbial responses to land management changes. We also found that soil nitrification potentials correlated with the total abundance of nitrifiers and that soil heterotrophic respiration correlated with the total abundance of carbon degradation genes, suggesting that changes in microbial community structure had altered ecosystem processes. IMPORTANCE Microbial communities are essential drivers of soil functional processes such as nitrification and heterotrophic respiration. Although there is initial evidence revealing the importance of soil type in shaping microbial communities, there has been no in-depth, comprehensive survey to robustly establish it as a major determinant of microbial community composition, functional gene structure, or ecosystem functioning. We examined bacterial and fungal community structures using Illumina sequencing, microbial functional genes using GeoChip, microbial biomass using phospholipid fatty acid analysis, as well as functional processes of soil nitrification potential and CO2 efflux. We demonstrated the critical role of soil type in determining microbial responses to land use changes at the continental level. Our findings underscore the inherent difficulty in generalizing ecosystem responses across landscapes and suggest that assessments of community feedback must take soil types into consideration. Author Video: An author video summary of this article is available.

2021 ◽  
Author(s):  
Sneha Gowda ◽  
Karivaradharajan Swarnalakshmi ◽  
Meenakshi Sharma ◽  
Kedharnath Reddy ◽  
Arpan Bhoumik ◽  
...  

Abstract Rhizosphere microbial communities are dynamic and play a crucial role in diverse biochemical processes and nutrient cycling. Soil type and cultivar modulate the compositionof rhizosphere microbial communities. Changes in the community composition significantly alter microbial function and ecological process. We examined the influence of soil type on eubacterial and diazotrophic community abundance and microbial metabolic potential in chickpea (cv. BG 372 and cv. BG 256) rhizosphere. The total eubacterial and diazotrophic community as estimated through 16S rDNA and nifH gene copy numbers using qPCR showed the soil type influence with clear rhizosphere effect on gene abundance. PLFA study has shown the variation in microbial community structure with different soil types. Differential influence of soil types and cultivar on the ratio of Gram positive to Gram negative bacteria was observed with most rhizosphere soils corresponding to higher ratios than bulk soil. The rhizosphere microbial activities (urease, dehydrogenase, alkaline phosphatase and beta-glucosidase) were also assessed as an indicator of microbial metabolic diversity. Principal component analysis and K-means non-hierarchical cluster mapping grouped soils into three categories, each having different soil enzyme activity or edaphic drivers. Soil type and cultivar influence on average substrate utilization pattern analyzed through community level physiological profiling (CLPP) was found to be higher for rhizosphere soils than bulk soils. The soil nutrient studies revealed that both soil type and cultivar influenced the available N, P, K and organic carbon content of rhizosphere soil. Our study signifies that soil type and cultivarjointly influenced soil microbial community abundance and their metabolic potential.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 865
Author(s):  
Lantian Su ◽  
Xinxin Liu ◽  
Guangyao Jin ◽  
Yue Ma ◽  
Haoxin Tan ◽  
...  

In recent decades, wild sable (Carnivora Mustelidae Martes zibellina) habitats, which are often natural forests, have been squeezed by anthropogenic disturbances such as clear-cutting, tilling and grazing. Sables tend to live in sloped areas with relatively harsh conditions. Here, we determine effects of environmental factors on wild sable gut microbial communities between high and low altitude habitats using Illumina Miseq sequencing of bacterial 16S rRNA genes. Our results showed that despite wild sable gut microbial community diversity being resilient to many environmental factors, community composition was sensitive to altitude. Wild sable gut microbial communities were dominated by Firmicutes (relative abundance 38.23%), followed by Actinobacteria (30.29%), and Proteobacteria (28.15%). Altitude was negatively correlated with the abundance of Firmicutes, suggesting sable likely consume more vegetarian food in lower habitats where plant diversity, temperature and vegetation coverage were greater. In addition, our functional genes prediction and qPCR results demonstrated that energy/fat processing microorganisms and functional genes are enriched with increasing altitude, which likely enhanced metabolic functions and supported wild sables to survive in elevated habitats. Overall, our results improve the knowledge of the ecological impact of habitat change, providing insights into wild animal protection at the mountain area with hash climate conditions.


2020 ◽  
Author(s):  
Qing-Lin Chen ◽  
Hang-Wei Hu ◽  
Zhen-Zhen Yan ◽  
Chao-Yu Li ◽  
Bao-Anh Thi Nguyen ◽  
...  

Abstract Background: Termites are ubiquitous insects in tropical and subtropical habitats, where they construct massive mounds from soil, their saliva and excreta. Termite mounds harbor an enormous amount of microbial inhabitants, which regulate multiple ecosystem functions such as mitigating methane emissions and increasing ecosystem resistance to climate change. However, we lack a mechanistic understanding about the role of termite mounds in modulating the microbial community assembly processes, which are essential to unravel the biological interactions of soil fauna and microorganisms, the major components of soil food webs. We conducted a large-scale survey across a >1500 km transect in northern Australia to investigate biogeographical patterns of bacterial and fungal community in 134 termite mounds and the relative importance of deterministic versus stochastic processes in microbial community assembly. Results: Microbial alpha (number of phylotypes) and beta (changes in bacterial and fungal community composition) significantly differed between termite mounds and surrounding soils. Microbial communities in termite mounds exhibited a significant distance-decay pattern, and fungal communities had a stronger distance-decay relationship (slope = -1.91) than bacteria (slope = -0.21). Based on the neutral community model (fitness < 0.7) and normalized stochasticity ratio index (NST) with a value below the 50% boundary point, deterministic selection, rather than stochastic forces, predominated the microbial community assembly in termite mounds. Deterministic processes exhibited significantly weaker impacts on bacteria (NST = 45.23%) than on fungi (NST = 33.72%), probably due to the wider habitat niche breadth and higher potential migration rate of bacteria. The abundance of antibiotic resistance genes (ARGs) was negatively correlated with bacterial/fungal biomass ratios, indicating that ARG content might be an important biotic factor that drove the biogeographic pattern of microbial communities in termite mounds. Conclusions: Deterministic processes play a more important role than stochastic processes in shaping the microbial community assembly in termite mounds, an unique habitat ubiquitously distributed in tropical and subtropical ecosystems. An improved understanding of the biogeographic patterns of microorganisms in termite mounds is crucial to decipher the role of soil faunal activities in shaping microbial community assembly, with implications for their mediated ecosystems functions and services.


2018 ◽  
Vol 264 ◽  
pp. 290-297 ◽  
Author(s):  
Oscar Franchi ◽  
Patricia Bovio ◽  
Eduardo Ortega-Martínez ◽  
Francisca Rosenkranz ◽  
Rolando Chamy

2018 ◽  
Vol 15 (12) ◽  
pp. 3909-3925 ◽  
Author(s):  
Nicholas Bock ◽  
France Van Wambeke ◽  
Moïra Dion ◽  
Solange Duhamel

Abstract. Oligotrophic regions play a central role in global biogeochemical cycles, with microbial communities in these areas representing an important term in global carbon budgets. While the general structure of microbial communities has been well documented in the global ocean, some remote regions such as the western tropical South Pacific (WTSP) remain fundamentally unexplored. Moreover, the biotic and abiotic factors constraining microbial abundances and distribution remain not well resolved. In this study, we quantified the spatial (vertical and horizontal) distribution of major microbial plankton groups along a transect through the WTSP during the austral summer of 2015, capturing important autotrophic and heterotrophic assemblages including cytometrically determined abundances of non-pigmented protists (also called flagellates). Using environmental parameters (e.g., nutrients and light availability) as well as statistical analyses, we estimated the role of bottom–up and top–down controls in constraining the structure of the WTSP microbial communities in biogeochemically distinct regions. At the most general level, we found a “typical tropical structure”, characterized by a shallow mixed layer, a clear deep chlorophyll maximum at all sampling sites, and a deep nitracline. Prochlorococcus was especially abundant along the transect, accounting for 68 ± 10.6 % of depth-integrated phytoplankton biomass. Despite their relatively low abundances, picophytoeukaryotes (PPE) accounted for up to 26 ± 11.6 % of depth-integrated phytoplankton biomass, while Synechococcus accounted for only 6 ± 6.9 %. Our results show that the microbial community structure of the WTSP is typical of highly stratified regions, and underline the significant contribution to total biomass by PPE populations. Strong relationships between N2 fixation rates and plankton abundances demonstrate the central role of N2 fixation in regulating ecosystem processes in the WTSP, while comparative analyses of abundance data suggest microbial community structure to be increasingly regulated by bottom–up processes under nutrient limitation, possibly in response to shifts in abundances of high nucleic acid bacteria (HNA).


Author(s):  
Yanfen Zheng ◽  
Zongchang Xu ◽  
Haodong Liu ◽  
Yan Liu ◽  
Yanan Zhou ◽  
...  

Salinity is an important but little-studied abiotic stressor affecting plant growth. Although several previous reports have examined salt-tolerant plant microbial communities, we still lack a comprehensive understanding about the functional characteristics and genomic information of this population.


2021 ◽  
Author(s):  
Jennifer D Rocca ◽  
Andrea Yammine ◽  
Marie Simonin ◽  
Jean Gibert

Temperature strongly influences microbial community structure and function, which in turn contributes to the global carbon cycle that can fuel further warming. Recent studies suggest that biotic interactions amongst microbes may play an important role in determining the temperature responses of these communities. However, how microbial predation regulates these communities under future climates is still poorly understood. Here we assess whether predation by one of the most important bacterial consumers globally, protists, influences the temperature response of a freshwater microbial community structure and function. To do so, we exposed these microbial communities to two cosmopolitan species of protists at two different temperatures, in a month-long microcosm experiment. While microbial biomass and respiration increased with temperature due to shifts in microbial community structure, these responses changed over time and in the presence of protist predators. Protists influenced microbial biomass and function through effects on community structure, and predation actually reduced microbial respiration rate at elevated temperature. Indicator species and threshold indicator taxa analyses showed that these predation effects were mostly determined by phylum-specific bacterial responses to protist density and cell size. Our study supports previous findings that temperature is an important driver of microbial communities, but also demonstrates that predation can mediate these responses to warming, with important consequences for the global carbon cycle and future warming.


Author(s):  
Arpitha Chikkanna ◽  
Devanita Ghosh

Microorganisms play very important role in elemental and mineral chemistry on earth surface. Along with the major biogeochemical cycles such as Carbon, Nitrogen, Sulphur and Phosphorus, which are crucially involved in thermodynamic balances in earth system, microbes are also involved in trace metal cycling. The organic carbon sustaining the indigenous microbial communities critically controls these microbial processes. A large number of the microbial communities are able to form a wide variety minerals, of which many have only biogenic origin and cannot be formed inorganically. Microbes also play a critical role in dissolution of minerals; a process which not only helps in soil formation and the transport of nutrients to higher trophic levels, but can also have many important industrial roles. Thus, in these metabolic activities, microorganisms contribute to the geological phenomenon of the transformation of metals and minerals. This chapter focuses on the role of various microbial metabolic processes that are involved in mineralization and mineral dissolution and the consequences involved with it.


2014 ◽  
Vol 81 (4) ◽  
pp. 1257-1266 ◽  
Author(s):  
Matthieu Barret ◽  
Martial Briand ◽  
Sophie Bonneau ◽  
Anne Préveaux ◽  
Sophie Valière ◽  
...  

ABSTRACTSeeds carry complex microbial communities, which may exert beneficial or deleterious effects on plant growth and plant health. To date, the composition of microbial communities associated with seeds has been explored mainly through culture-based diversity studies and therefore remains largely unknown. In this work, we analyzed the structures of the seed microbiotas of different plants from the family Brassicaceae and their dynamics during germination and emergence through sequencing of three molecular markers: the ITS1 region of the fungal internal transcribed spacer, the V4 region of 16S rRNA gene, and a species-specific bacterial marker based on a fragment ofgyrB. Sequence analyses revealed important variations in microbial community composition between seed samples. Moreover, we found that emergence strongly influences the structure of the microbiota, with a marked reduction of bacterial and fungal diversity. This shift in the microbial community composition is mostly due to an increase in the relative abundance of some bacterial and fungal taxa possessing fast-growing abilities. Altogether, our results provide an estimation of the role of the seed as a source of inoculum for the seedling, which is crucial for practical applications in developing new strategies of inoculation for disease prevention.


Author(s):  
Stephanie Jurburg ◽  
Shane Blowes ◽  
Ashley Shade ◽  
Nico Eisenhauer ◽  
Jonathan Chase

Disturbances alter the diversity and composition of microbial communities, but whether microbiomes from different environments exhibit similar degrees of resistance or rates of recovery has not been evaluated. Here, we synthesized 86 time series of disturbed mammalian, aquatic, and soil microbiomes to examine how the recovery of microbial richness and community composition differed after disturbance. We found no general patterns in compositional variance (i.e., dispersion) in any microbiomes over time. Only mammalian microbiomes consistently exhibited decreases in richness following disturbance. Importantly, they tended to recover this richness, but not their composition, over time. In contrast, aquatic microbiomes tended to diverge from their pre-disturbance composition following disturbance. By synthesizing microbiome responses across environments, our study aids in the reconciliation of disparate microbial community assembly frameworks, and highlights the role of the environment in microbial community reassembly following disturbance.


Sign in / Sign up

Export Citation Format

Share Document