scholarly journals Rapid and Accurate Antibiotic Susceptibility Determination of tet (X)-Positive E. coli Using RNA Biomarkers

Author(s):  
Haijie Zhang ◽  
Yan Li ◽  
Yongjia Jiang ◽  
Xiaoyu Lu ◽  
Ruichao Li ◽  
...  

Infections caused by multidrug-resistant (MDR) Gram-negative pathogens are an increasing threat to global health. Tigecycline is one of the last-resort antibiotics for the treatment of these complicated infections; however, the emergence of plasmid-encoded tigecycline resistance genes, namely, tet (X), severely diminishes its clinical efficacy.

2019 ◽  
Vol 61 (1) ◽  
Author(s):  
Edgarthe Priscilla Ngaiganam ◽  
Isabelle Pagnier ◽  
Wafaa Chaalal ◽  
Thongpan Leangapichart ◽  
Selma Chabou ◽  
...  

Abstract Background We investigate here the presence of multidrug-resistant bacteria isolated from stool samples of yellow-legged gulls and chickens (n = 136) in urban parks and beaches of Marseille, France. Bacterial isolation was performed on selective media, including MacConkey agar with ceftriaxone and LBJMR medium. Antibiotic resistance genes, including extended-spectrum β-lactamases (ESBL) (i.e. blaCTX-M, blaTEM and blaSHV), carbapenemases (blaKPC, blaVIM, blaNDM, blaOXA-23, blaOXA-24, blaOXA-48 and blaOXA-58) and colistin resistance genes (mcr-1 to mcr-5) were screened by real-time PCR and standard PCR and sequenced when found. Results Of the 136 stools samples collected, seven ESBL-producing Gram-negative bacteria (BGN) and 12 colistin-resistant Enterobacteriaceae were isolated. Among them, five ESBL-producing Escherichia coli and eight colistin-resistant Hafnia alvei strains were identified. Four blaTEM-1 genes were detected in yellow-legged gulls and chickens. Three CTX-M-15 genes were detected in yellow-legged gulls and pigeons, and one CTX-M-1 in a yellow-legged gull. No mcr-1 to mcr-5 gene were detected in colistin-resistant isolates. Genotyping of E. coli strains revealed four different sequence types already described in humans and animals and one new sequence type. Conclusions Urban birds, which are believed to have no contact with antibiotics appear as potential source of ESBL genes. Our findings highlight the important role of urban birds in the proliferation of multidrug-resistant bacteria and also the possible zoonotic transmission of such bacteria from wild birds to humans.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Kayhan Ilbeigi ◽  
Mahdi Askari Badouei ◽  
Hossein Vaezi ◽  
Hassan Zaheri ◽  
Sina Aghasharif ◽  
...  

Abstract Objectives The emergence of colistin-resistant Enterobacteriaceae from human and animal sources is one of the major public health concerns as colistin is the last-resort antibiotic for treating infections caused by multidrug-resistant Gram-negative bacteria. We aimed to determine the prevalence of the prototype widespread colistin resistance genes (mcr-1 and mcr-2) among commensal and pathogenic Escherichia coli strains isolated from food-producing and companion animals in Iran. Results A total of 607 E. coli isolates which were previously collected from different animal sources between 2008 and 2016 used to uncover the possible presence of plasmid-mediated colistin resistance genes (mcr-1 and mcr-2) by PCR. Overall, our results could not confirm the presence of any mcr-1 or mcr-2 positive E. coli among the studied isolates. It is concluded that despite the important role of food-producing animals in transferring the antibiotic resistance, they were not the main source for carriage of mcr-1 and mcr-2 in Iran until 2016. This study suggests that the other mcr variants (mcr-3 to mcr-9) might be responsible for conferring colistin resistance in animal isolates in Iran. The possible linkage between pig farming industry and high level of mcr carriage in some countries needs to be clarified in future prospective studies.


Author(s):  
Amita Shobha Rao ◽  
Shobha Kl ◽  
Prathibha Md’almeida ◽  
Kiranmai S Rai

  Objective: Infections caused by Gram-negative bacteria are important causes of morbidity and mortality. Extracts of plants and herbs such as Clitorea ternatea are used as diuretic. This work attempts to find out antimicrobial activity of aqueous and alcoholic extract of C. ternatea roots against Pseudomonas aeruginosa (ATCC 27853), Escherichia coli (ATCC 25922), clinical strains of Klebsiella pneumoniae, and Candida albicans.Methods: The agar well-diffusion method was done using Mueller Hinton agar and Sabouraud’s dextrose agar. The microorganism grown in peptone water was inoculated into culture medium. 4 mm diameter well punched into the agar was filled with 20 μl of aqueous and alcoholic root extracts C. ternatea extracts in various concentrations (100-25 μg/ml). The plates were incubated and antimicrobial activity was evaluated.Results: Aqueous root extract of C. ternatea with the concentration of 100 μg/ml showed zone of inhibition against E. coli (ATCC 25922) 18 mm, P. aeruginosa (ATCC 27853) 14 mm, multidrug resistant strain of K. pneumoniae 15 mm. Alcoholic extract of C. ternatea with the concentration of 100 μg/ml showed zone of inhibition of 35 mm against E. coli (ATCC 25922), P. aeruginosa (ATCC 27853) 22 mm, and multidrug resistant strain of K. pneumoniae 28 mm. C. albicanswas resistant to both extract of C. ternatea root. Conclusions: Alcoholic extract of C. ternatea is a better antibacterial agent against multidrug resistant Klebsiella species and other Gram-negative pathogens. Further, studies are required to identify active substances from the alcoholic extracts of C. ternatea for treating infections.


2021 ◽  
pp. 16-19
Author(s):  
N. I. Gabrielyan ◽  
V. G. Kormilitsyna ◽  
V. K. Zaletaeva ◽  
A. V. Krotevich ◽  
I. A. Miloserdov ◽  
...  

Detection of carbapenem resistance genes is a critical issue for hospitals due to possible recommendations for infection control and targeted therapy. The Cepheid Xpert instrument, a Carba-R test for the detection and differentiation of five common carbapenemase genes, was tested from September 2020 to February 2021. As part of the approbation, 20 tests were provided. This review presents the results of the approbation of a relatively regular sensitivity study on Siemens WalkAway‑96 plus. Cepheid Xpert Carba-R analysis has been shown to be an accurate and fast tool for detecting colonization by carbapenem-resistant gram-negative bacteria, which can help limit the spread of these organisms in hospitals.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S235-S235
Author(s):  
Amani Kholy ◽  
Samia A Girgis ◽  
Arwa R Elmanakhly ◽  
Mervat A F Shetta ◽  
Dalia El- Kholy ◽  
...  

Abstract Background High rates of AMR among Gram-negative bacilli (GNB) have been reported from Egypt for almost 2 decades. Surveillance and identifying the genetic basis of AMR provide important information to optimize patient care. As there is no adequate data on the genetic basis of AMR in Egypt, we aimed to identify the molecular characterization of multi-drug-resistant (MDR) Gram-negative pathogens (GNP). Methods Three major tertiary-care hospitals in Egypt participated in the “Study for Monitoring Antimicrobial Resistance Trends” (SMART) from 2014 to 2016. Consecutive GNPs were identified and their susceptibility to antimicrobials were tested. Molecular identification of ESBL, AmpC, and carbapenemase resistance genes was conducted on MDR isolates. Results We enrolled 1,070 consecutive Gram-negative isolates; only one isolate per patient according to the standard protocol of (SMART). During 2014–2015, 578 GNP were studied. Enterobacteriaceae comprised 66% of the total isolates. K. pneumoniae and E. coli were the most common (29.8% and 29.4%). K. pneumoniae and E. coli were the predominant organisms in IAI (30.5% and 30.1%, respectively) and UTI (and 38.9% and 48.6%, respectively), while Acinetobacter baumannii was the most prevalent in RTI (40.2%). ESBL producers were phenotypically detected in 53% of K. pneumoniae, and 68% of E. coli. During 2016, 495 GNP were studied. ESBL continued to be high. For E. coli and K. pneunomiea, the most active antimicrobials were amikacin (≥93%), imipenem/meropenem (≥87%) and colistin (97%). Genetic study of ertapenem-resistant isolates and 50% of isolates with ESBL phenotype revealed ESβL production in more than 90% of isolates; blaCTXM-15 was detected in 71.4% and 68.5% in K. pneumoniae and E. coli, respectively, blaTEM-OSBL in 48.5% and47.5% of K. pneumoniae and E. coli, respectively. Carbapenem resistance genes were detected in 45.4% of isolates. In K. pneumoniae, OXA-48 dominated (40.6%), followed by NDM1 (23.7%) and OXA-232 (4.5%). Conclusion Our study detected alarming rates of resistance and identified many resistance mechanisms in clinical isolates from Egyptian hospitals. These high rates highlight the importance of continuous monitoring of the resistance trend and discovering the novel resistant mechanisms of resistance, and the underscores a national antimicrobial stewardship plan in Egypt. Disclosures All authors: No reported disclosures.


mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Yingbo Shen ◽  
Zuowei Wu ◽  
Yang Wang ◽  
Rong Zhang ◽  
Hong-Wei Zhou ◽  
...  

ABSTRACTThe recent emergence of a transferable colistin resistance mechanism, MCR-1, has gained global attention because of its threat to clinical treatment of infections caused by multidrug-resistant Gram-negative bacteria. However, the possible transmission route ofmcr-1amongEnterobacteriaceaespecies in clinical settings is largely unknown. Here, we present a comprehensive genomic analysis ofEscherichia coliisolates collected in a hospital in Hangzhou, China. We found thatmcr-1-carrying isolates from clinical infections and feces of inpatients and healthy volunteers were genetically diverse and were not closely related phylogenetically, suggesting that clonal expansion is not involved in the spread ofmcr-1. Themcr-1gene was found on either chromosomes or plasmids, but in most of theE. coliisolates,mcr-1was carried on plasmids. The genetic context of the plasmids showed considerable diversity as evidenced by the different functional insertion sequence (IS) elements, toxin-antitoxin (TA) systems, heavy metal resistance determinants, and Rep proteins of broad-host-range plasmids. Additionally, the genomic analysis revealed nosocomial transmission ofmcr-1and the coexistence ofmcr-1with other genes encoding β-lactamases and fluoroquinolone resistance in theE. coliisolates. These findings indicate thatmcr-1is heterogeneously disseminated in both commensal and pathogenic strains ofE. coli, suggest the high flexibility of this gene in its association with diverse genetic backgrounds of the hosts, and provide new insights into the genome epidemiology ofmcr-1among hospital-associatedE. colistrains.IMPORTANCEColistin represents one of the very few available drugs for treating infections caused by extensively multidrug-resistant Gram-negative bacteria. The recently emergentmcr-1colistin resistance gene threatens the clinical utility of colistin and has gained global attention. Howmcr-1spreads in hospital settings remains unknown and was investigated by whole-genome sequencing ofmcr-1-carryingEscherichia coliin this study. The findings revealed extraordinary flexibility ofmcr-1in its spread among genetically diverseE. colihosts and plasmids, nosocomial transmission ofmcr-1-carryingE. coli, and the continuous emergence of novel Inc types of plasmids carryingmcr-1and newmcr-1variants. Additionally,mcr-1was found to be frequently associated with other genes encoding β-lactams and fluoroquinolone resistance. These findings provide important information on the transmission and epidemiology ofmcr-1and are of significant public health importance as the information is expected to facilitate the control of this significant antibiotic resistance threat.


Author(s):  
Yi-Hsuan Lee ◽  
Chao-Min Wang ◽  
Po-Yu Liu ◽  
Ching-Chang Cheng ◽  
Zong-Yen Wu ◽  
...  

Essential oils from the dried spikes ofNepeta tenuifolia(Benth) are obtained by steam distillation. Pulegone was identified as the main component in the spikes ofN. tenuifoliathrough analysis, with greater than 85% purity obtained in this study. The essential oils are extremely active against all Gram-positive and some Gram-negative reference bacteria, particularlySalmonella enterica,Citrobacter freundii, andEscherichia coli. The minimum inhibitory concentration was found to be between 0.08 and 0.78% (againstS. enterica), 0.39 and 0.78% (againstC. freundii), and 0.097 and 0.39% (againstE. coli), whereas the minimum bactericidal concentration varied in range from 0.097% to 1.04%. In general, the essential oils show a strong inhibitory action against all tested reference strains and clinical isolates. However, the antibacterial activity of EOs against bothPseudomonas aeruginosareference strains and clinical isolates was relatively lower than other Gram-negative pathogens. The essential oils ofN. tenuifoliaalso displayed bactericidal activities (MBC/MIC < 4) in this study. These findings reflect the bactericidal activity of the essential oils against a wide range of multidrug-resistant clinical pathogens in an in vitro study. In addition, we propose the fragmentation pathways of pulegone and its derivatives by LC-ESI-MS/MS in this study.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S288-S288
Author(s):  
Tafese B Tufa ◽  
Fuchs André ◽  
Sileshi Abdissa ◽  
Zewdu Hurissa ◽  
Hans Martin Orth ◽  
...  

Abstract Background Acute infectious diseases and sepsis are among the leading causes of mortality in Ethiopia. The lack of local data concerning causative pathogens and resistance patterns results in suboptimal empirical treatment and unfavorable clinical outcome. The objective of this study was the characterization of bacterial pathogens in hospitalized patients with febrile infections in Central Ethiopia. Methods In total, 684 patients ≥1 year of age with fever admitted to the Asella Teaching Hospital from April 2016 to June 2018 were included. Blood and other appropriate clinical specimens were cultured. Susceptibility testing was performed using the Kirby–Bauer method and VITEK2. Confirmation of species identification and identification of resistance genes were conducted using MALDI-ToF and PCR at a microbiology laboratory in Düsseldorf, Germany. Results In total, 684 study participants were included; 54% were male and mean age was 26.7 years. Thus, the overall culture positivity rate was 7.5%. Of the 83 cultured organisms, 38(46%) were Gram-negative, 43(52%) Gram-positive, and 2(2%) Candida species. Among the 38 Gram-negative isolates, 16(42%) were E. coli, 15(39%) K. pneumoniae, and 4(11%) P. aeruginosa. Resistance against commonly used antibiotics for Gram-negative at the study site was: piperacillin/tazobactam 48%(13), ampicillin/sulbactam 93% (25), cefotaxime 89%(24), ceftazidime 74%(20), Cefipime 74%(20), meropenem 7%(2), amikacin 4% (1) and gentamicin 56%(15). Of 27 Gram-negative available for resistance-gene detection, blaNDM-1 was detected in one K. pneumoniae isolate and blaNDM-1 plus blaOXA-51 in A. baumannii. 81%(22/27) of the Gram-negative rods were confirmed to contain ESBL-genes as follows: TEM 17(77%), CTX-M-1-group 15(68%), SHV-6(27%) and CTX-M-9-group 2(9%). Among isolated S.aureus, 1(5%) was confirmed to be Methicillin-resistant S. aureus. Conclusion We found a high prevalence (81%) of ESBL-producing bacteria and 7.4% carbapenem resistance at the study site. More than half of Gram-negative isolates had two or more mobile resistance genes. These findings warrant the need for local national multidrug-resistant surveillance. Strengthening of antimicrobial stewardship programs is needed in order to face the threat of multidrug-resistant bacteria. Disclosures All authors: No reported disclosures.


2016 ◽  
Vol 60 (7) ◽  
pp. 4346-4350 ◽  
Author(s):  
Laura J. Rojas ◽  
Meredith S. Wright ◽  
Elsa De La Cadena ◽  
Gabriel Motoa ◽  
Kristine M. Hujer ◽  
...  

ABSTRACTWe report complete genome sequences of fourblaNDM-1-harboring Gram-negative multidrug-resistant (MDR) isolates from Colombia. TheblaNDM-1genes were located on 193-kb Inc FIA, 178-kb Inc A/C2, and 47-kb (unknown Inc type) plasmids. Multilocus sequence typing (MLST) revealed that these isolates belong to sequence type 10 (ST10) (Escherichia coli), ST392 (Klebsiella pneumoniae), and ST322 and ST464 (Acinetobacter baumanniiandAcinetobacter nosocomialis, respectively). Our analysis identified that the Inc A/C2 plasmid inE. colicontained a novel complex transposon (Tn125and Tn5393with three copies ofblaNDM-1) and a recombination “hot spot” for the acquisition of new resistance determinants.


2016 ◽  
Vol 82 (12) ◽  
pp. 3605-3610 ◽  
Author(s):  
Andreas F. Wendel ◽  
Sofija Ressina ◽  
Susanne Kolbe-Busch ◽  
Klaus Pfeffer ◽  
Colin R. MacKenzie

ABSTRACTReports of outbreaks concerning carbapenemase-producing Gram-negative bacteria in which the main source of transmission is the hospital environment are increasing. This study describes the results of environmental sampling in a protracted polyspecies metallo-beta-lactamase GIM-1 outbreak driven by plasmids and bacterial clones ofEnterobacter cloacaeandPseudomonas aeruginosain a tertiary care center. Environmental sampling targeting wet locations (especially sinks) was carried out on a surgical intensive care unit and on a medical ward on several occasions in 2012 and 2013. We were able to demonstrate 43blaGIM-1-carrying bacteria (mainly nonfermenters but alsoEnterobacteriaceae) that were either related or unrelated to clinical strains in 30 sinks and one hair washbasin. GIM-1 was found in 12 different species, some of which are described here as carriers of GIM-1. Forty out of 43 bacteria displayed resistance to carbapenems and, in addition, to various non-beta-lactam antibiotics. Colistin resistance was observed in twoE. cloacaeisolates with MICs above 256 mg/liter. TheblaGIM-1gene was harbored in 12 different class 1 integrons, some without the typical 3′ end. TheblaGIM-1gene was localized on plasmids in five isolates.In vitroplasmid transfer by conjugation was successful in one isolate. The environment, with putatively multispecies biofilms, seems to be an important biological niche for multidrug-resistant bacteria and resistance genes. Biofilms may serve as a “melting pot” for horizontal gene transfer, for dissemination into new species, and as a reservoir to propagate future hospital outbreaks.IMPORTANCEIn Gram-negative bacteria, resistance to the clinically relevant broad-spectrum carbapenem antibiotics is a major public health concern. Major reservoirs for these resistant organisms are not only the gastrointestinal tracts of animals and humans but also the (hospital) environment. Due to the difficulty in eradicating biofilm formation in the latter, a sustained dissemination of multidrug-resistant bacteria from the environment can occur. In addition, horizontal transfer of resistance genes on mobile genetic elements within biofilms adds to the total “resistance gene pool” in the environment. To gain insight into the transmission pathways of a rare and locally restricted carbapenemases resistance gene (blaGIM-1), we analyzed the genetic background of theblaGIM-1gene in environmental bacteria during a long-term polyspecies outbreak in a German hospital.


Sign in / Sign up

Export Citation Format

Share Document