A Mathematical Model and Design Calculation of a Thermal Deaerator with a Bubbling Storage Tank

2019 ◽  
Vol 66 (9) ◽  
pp. 681-686
Author(s):  
A. G. Laptev ◽  
E. A. Lapteva
2020 ◽  
Author(s):  
M. T. Nitsas ◽  
I. P. Koronaki

Abstract The objective of this paper is the thermodynamic analysis of a solar powered Organic Rankine Cycle (O.R.C.) and the investigation of potential working fluids in order to select the optimum one. A dynamic model for a solar O.R.C. with a storage tank, which produces electricity is developed. The mathematical model includes all the equations that describe the operation of the solar collectors, the storage tank, the Rankine Cycle and the feedback between them. The model runs for representative days throughout the year, calculating the net produced energy as a function of the selected evaporation temperature for every suitable working fluid. Above that, the temporal variation of the systems’ temperatures, collectors’ efficiency and net produced power, for the optimum organic fluid and evaporation temperature are presented.


2014 ◽  
Vol 644-650 ◽  
pp. 199-202
Author(s):  
Pei Qin Wang ◽  
Zeng Shun Xu ◽  
Zuo Feng Sun ◽  
Hui Yuan Jiang

Based on theoretical calculation, virtual prototype technology and the method of finite element analysis, the fully mechanized hydraulic support is designed and simulated. Firstly, the four-link mechanism of hydraulic support mechanical model and mathematical model are established, the demission is confirmed by design calculation of structure. Secondly, through the establishment of rigid parameterized virtual prototype model of the system, dynamics simulation analysis and research is finished based on ADAMS on the mechanical properties. Finally, based on FEA, the modal calculation of key components is completed by using ANSYS.


2012 ◽  
Vol 466-467 ◽  
pp. 951-955
Author(s):  
Jun Qing Zhan ◽  
Xiao Mei Feng ◽  
Li Shun Li ◽  
Xiang De Meng

The self-loading device used for side-crane is put forward. Its structure is presented. Based on the force analysis when the side-crane works at flat ground, the mathematical model is established when the crane working at uneven ground. And the design calculation is performed. The self-loading device’s optimal design is accomplished. Based on the above calculation results, the self-loading prototype is manufactured. And the design method can be adopted to the similar equipment’s structural design.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Yu Qihui ◽  
Hao Xueqing ◽  
Tan Xin

Using solar energy for space heating is an efficient and simply way to satisfy the energy demands of buildings. In this study, a typical office building is selected as a case model to obtain indoor air temperature characteristics with dual heat storage devices. By analyzing our solar heating system, a mathematical model of the system working process is set up. Using the software matlab/simulink for simulation, the indoor air temperature characteristics in 1 day are obtained. Simulation and experimental results show good consistency. And using the mathematical model, the storage tank size is optimized to search for the minimum size for the fixed building. Based on our analysis, the optimum ratio of storage tank A volume and collector field area is 0.11 m. This research can be a good reference for the design of the solar heating system.


2021 ◽  
Vol 2056 (1) ◽  
pp. 012053
Author(s):  
E A Buzaeva ◽  
D A Evsevichev ◽  
O V Maksimova

Abstract This work is dedicated to study of the structural characteristics and parameters in advanced electroluminescent structures. The important problems in this area are the high complexity and the slowness of the design calculation processes. The problem can be solved by developing a mathematical model of the system based on equivalent circuits. First step in developing a mathematical model is formulation.


Author(s):  
R D Bell ◽  
N W Rees ◽  
C X Lu

A mathematical model suitable for predicting the transient behaviour of deaerator plant is presented. The model is based on energy and mass balance equations applied to the deaerator, storage tank and feed pump suction pipe. The model parameters are based entirely on the physical characteristics of the plant, and hence the model can be easily adapted to plants of different size. A comparison with data collected from a deaerator plant operating on a 500 MW unit indicates that the model gives good transient responses and can be used to predict accurately the onset of cavitation in the feed pump.


2011 ◽  
Vol 63-64 ◽  
pp. 702-706
Author(s):  
Feng Xing

The issue under discussion in this paper results from a practical task faced with research institutions and manufacturers for gas station equipment, and will be divided into two parts: 1. In order to observe the impact of storage tank displacement on tank gage table, the author, on the premise of the displacements parameters, to detect the corresponding values of oil level and volume and analyze the law of change of the tank gage table through modeling and provided a revised tank gage table. The above belongs to direct problem. 2. Based on the data from practical detection, the paper will identify how the displacement occurred and the level of the displacement. Meanwhile, the measure and result of calibration will be offered. All the above belongs to inverse problem.


2020 ◽  
Vol 12 (20) ◽  
pp. 8686 ◽  
Author(s):  
Le Minh Nhut ◽  
Waseem Raza ◽  
Youn Cheol Park

The requirement for energy is increasing worldwide as populations and economies develop. Reasons for this increase include global warming, climate change, an increase in electricity demand, and paucity of fossil fuels. Therefore, research in renewable energy technology has become a central topic in recent studies. In this study, a solar-assisted house heating system with a seasonal underground thermal energy storage tank is proposed based on the reference system to calculate the insulation thickness effect, the collector area, and an underground storage tank volume on the system performance according to real weather conditions at Jeju Island, South Korea. For this purpose, a mathematical model was established to calculate its operating performance. This mathematical model used the thermal response factor method to calculate the heat load and heat loss of the seasonal underground thermal energy storage tank. The results revealed that on days with different weather conditions, namely, clear weather, intermittent clouds sky, and overcast sky, the obtained solar fraction was 45.8%, 17.26%, and 0%, respectively. Using this method, we can save energy, space, and cost. This can then be applied to the solar-assisted house heating system in South Korea using the seasonal underground thermal energy storage tank.


1973 ◽  
Vol 95 (3) ◽  
pp. 171-179 ◽  
Author(s):  
G. S. Liao

In recent years, mechanical failure of trays and structural damage to steel members inside deaerating sections of power plant deaerators have been encountered during transient load operation of main turbines. These failures have been attributed to numerous causes, but underestimates of differential pressure across the tray stack and insufficient sizing of the pressure equalizers connecting the water storage tank and the deaerating section have been singled out as major factors. Design criteria of the pressure equalizers and tray stack enclosures should take into consideration rapid load reduction of the turbine. Under such mode of operation, pressure decay would produce flashing from the saturated water stored in the tank rushing upward through the pressure equalizers with possible flooding of the deaerating section if the equalizers were improperly sized. Concurrently, the differential pressure across the tray stack would increase by a factor of 10 to 20 times higher than normal maximum load. In such instances, the tray stack designed merely to meet a maximum stable load could not possibly withstand such severe dynamic loading. This paper presents a mathematical analysis of the transient operating behavior of a deaerator, with emphasis placed on sudden load reduction of the turbine. Items such as the quantity of flashing steam from the storage tank, physical properties of vapor and liquid in the deaerator, and the pressure losses through the pressure equalizers and tray stack are analyzed. From the analytical results, criteria of pressure equalizer sizing and tray stack enclosure design are established. A numerical example for design calculation is included for deaerator manufacturers and power plant process system engineers to use as reference for application in design.


Sign in / Sign up

Export Citation Format

Share Document