Investigation of the optimal annealing temperature for the enhanced thermoelectric properties of MOCVD-grown ZnO films

2017 ◽  
Vol 124 (4) ◽  
pp. 580-583 ◽  
Author(s):  
K. Mahmood ◽  
A. Ali ◽  
M. I. Arshad ◽  
M. Ajaz un Nabi ◽  
N. Amin ◽  
...  
2014 ◽  
Vol 1070-1072 ◽  
pp. 475-478
Author(s):  
Xiang Min Zhao

N-doped ZnO films were deposited on Si (100) substrates by radio frequency (RF) magnetron sputtering in N2/Ar2 gas mixture. After the deposition, the films were post-annealed in vacuum at several temperatures from 400°C to 850°C for 60 minutes respectively.X-ray diffraction (XRD), atomic force microscope (AFM), Hall measurements setup (Hall) were used to analyze the structure, morphology and electrical properties of ZnO films.The results show that growth are still preferred (002) orientation of ZnO films following post-annealing. When the annealing temperature is higher than 650°C achieved by the n-type ZnO to the p-type transition and for the better growth of p-type ZnO films, the optimal annealing temperature is 650°C.


Author(s):  
С.В. Зайцев ◽  
В.С. Ващилин ◽  
В.В. Колесник ◽  
М.В. Лимаренко ◽  
Д.С. Прохоренков ◽  
...  

AbstractZinc-oxide films 1.4 μm in thickness are deposited onto glassy substrates by the dual magnetron-assisted sputtering of zinc targets in an argon and oxygen gas atmosphere. The dependences of the structural and optical characteristics of the ZnO films on the temperature of postdeposition photonic annealing are studied. It is established that an increase in the annealing temperature yields an increase in the degree of crystallinity of the films. Electron microscopy shows that the deposited ZnO coatings are columnar in structure and the microstructure density and crystallite size increase upon annealing. It is found that, at an annealing temperature of 450–650°C, the optical transmittance increases to >90% in the spectral range 400–1100 nm. The experimental results show that the temperature of vacuum photonic annealing has the most profound effect on the final properties of ZnO coatings.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5043
Author(s):  
Chia-Hsun Hsu ◽  
Xin-Peng Geng ◽  
Wan-Yu Wu ◽  
Ming-Jie Zhao ◽  
Xiao-Ying Zhang ◽  
...  

In this study, aluminum-doped zinc oxide (Al:ZnO) thin films were grown by high-speed atmospheric atomic layer deposition (AALD), and the effects of air annealing on film properties are investigated. The experimental results show that the thermal annealing can significantly reduce the amount of oxygen vacancies defects as evidenced by X-ray photoelectron spectroscopy spectra due to the in-diffusion of oxygen from air to the films. As shown by X-ray diffraction, the annealing repairs the crystalline structure and releases the stress. The absorption coefficient of the films increases with the annealing temperature due to the increased density. The annealing temperature reaching 600 °C leads to relatively significant changes in grain size and band gap. From the results of band gap and Hall-effect measurements, the annealing temperature lower than 600 °C reduces the oxygen vacancies defects acting as shallow donors, while it is suspected that the annealing temperature higher than 600 °C can further remove the oxygen defects introduced mid-gap states.


2008 ◽  
Vol 148 (1-3) ◽  
pp. 35-39 ◽  
Author(s):  
Fanyong Ran ◽  
Lei Miao ◽  
Sakae Tanemura ◽  
Masaki Tanemura ◽  
Yongge Cao ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Jyun-Min Lin ◽  
Ying-Chung Chen ◽  
Chi-Pi Lin

Bismuth telluride-based compounds are known to be the best thermoelectric materials within room temperature region, which exhibit potential applications in cooler or power generation. In this paper, thermal evaporation processes were adopted to fabricate the n-type Bi2Te3thin films on SiO2/Si substrates. The influence of thermal annealing on the microstructures and thermoelectric properties of Bi2Te3thin films was investigated in temperature range 100–250°C. The crystalline structures and morphologies were characterized by X-ray diffraction and field emission scanning electron microscope analyses. The Seebeck coefficients, electrical conductivity, and power factor were measured at room temperature. The experimental results showed that both the Seebeck coefficient and power factor were enhanced as the annealing temperature increased. When the annealing temperature increased to 250°C for 30 min, the Seebeck coefficient and power factor of n-type Bi2Te3-based thin films were found to be about −132.02 μV/K and 6.05 μW/cm·K2, respectively.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 3910
Author(s):  
Ming-Jie Zhao ◽  
Zhi-Tao Sun ◽  
Zhi-Xuan Zhang ◽  
Xin-Peng Geng ◽  
Wan-Yu Wu ◽  
...  

Zinc oxide (ZnO) has drawn much attention due to its excellent optical and electrical properties. In this study, ZnO film was prepared by a high-deposition-rate spatial atomic layer deposition (ALD) and subjected to a post-annealing process to suppress the intrinsic defects and improve the crystallinity and film properties. The results show that the film thickness increases with annealing temperature owing to the increment of oxide layer caused by the suppression of oxygen vacancy defects as indicated by the X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) spectra. The film transmittance is seldom influenced by annealing. The refractive index increases with annealing temperature at 300–700 °C, possibly due to higher density and crystallinity of the film. The band gap decreases after annealing, which should be ascribed to the decrease in carrier concentration according to Burstein–Moss model. The carrier concentration decreases with increasing annealing temperature at 300–700 °C since the oxygen vacancy defects are suppressed, then it increases at 800 °C possibly due to the out-diffusion of oxygen atoms from the film. Meanwhile, the carrier mobility increases with temperature due to higher crystallinity and larger crystallite size. The film resistivity increases at 300–700 °C then decreases at 800 °C, which should be ascribed primarily to the variation of carrier concentration.


2014 ◽  
Vol 685 ◽  
pp. 3-6
Author(s):  
Ying Lian Wang ◽  
Jun Yao Ye

Pure ZnO thin films and Ag doped ZnO thin films were prepared on quartz substrates by sol-gel process. Structural features and UV absorption spectrum have been studied by XRD and UV-Vis-Nir scanning spectrophotometer. Taking phenol as pollutants, further study of the effect of different annealing temperature and Ag dopant amount of ZnO films on photocatalytic properties was carried out. The results showed that, the optimal annealing temperature on photocatalytic degradation of phenol in this experiment was 300 °C, the best molar ratio of ZnO and Ag was 30:1, which was better than pure ZnO film greatly. Excellent adhesion, recyclable and efficient degradation Ag doped ZnO thin films were found in this experiment.


2006 ◽  
Vol 287 (1) ◽  
pp. 78-84 ◽  
Author(s):  
Shou-Yi Kuo ◽  
Wei-Chun Chen ◽  
Fang-I Lai ◽  
Chin-Pao Cheng ◽  
Hao-Chung Kuo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document