scholarly journals Stirred cell ultrafiltration of lignin from black liquor generated from South African kraft mills

2016 ◽  
Vol Volume 112 (Number 11/12) ◽  
Author(s):  
Paul Kekana ◽  
Bruce Sithole ◽  
Deresh Ramjugernath ◽  
◽  
◽  
...  

Abstract Ultrafiltration of lignin from black liquor was carried out in a stirred batch cell using polyethersulfone membranes. Parameters such as operating pressure, feed concentration, stirring rate and membrane cut-off size were varied and their effects on lignin retention and permeate flux were investigated. The operating pressure, feed concentration and stirring rate were varied in the ranges 150–350 kPa, 3–9% and 200–400 rpm, respectively. The membranes used had cut-off sizes of 5 kDa, 10 kDa and 20 kDa. A one-factor-at-a-time experimental design approach was applied in this study. Retention of lignin increased with increases in operating pressure, feed concentration and stirring rate, but decreased with an increase in molecular cut-off size of the membrane. Permeate flux on the other hand increased with increases in pressure, stirring rate and molecular cut-off size of the membrane but decreased with an increase in feed concentration. The extraction of lignin from black liquor was successfully carried out and extraction efficiencies as high as 86% could be achieved depending on the experimental conditions. The study was concluded with the recommendation of conducting additional experiments using a pilot plant in a continuous mode.

2000 ◽  
Vol 41 (10-11) ◽  
pp. 135-142 ◽  
Author(s):  
Z. Ujang ◽  
G.K. Anderson

This paper describes an investigation on the effect of operating parameters on the separation of metal chelates using LPROM. The objective of this study was to optimise the process of metal chelates removal by a LPROM using statistical factorial design. Factorial experiment by statistical design was applied, in which a central composite factorial design (half replicate) was used, then followed up by a star design to give a central composite factorial design. A bench-scale spiral wound configuration of sulphonated polysulphone LPROM was used at various operating conditions, i.e. operating conditions, solute concentrations, EDTA, pH and temperature. It has been shown experimentally that the effect of pressure is non-linear with respect to percentage of metal removal at different concentrations of metal ions in the feed solution. Observation of the response surface implies that the operating pressure was not the significant parameter in determining the percentage of zinc removal in the LPROM. The operating pressure, temperature and concentration of EDTA in the feed solution were the most significant parameters for permeate flux variation. It can also be concluded that for a given set of feed and experimental conditions, permeate flux increased linearly with operating pressure and temperature. The other parameters, i.e. the concentration of zinc in the feed solution and pH, were not statistically significant.


1998 ◽  
Vol 38 (4-5) ◽  
pp. 521-528 ◽  
Author(s):  
Zaini Ujang ◽  
G. K. Anderson

This paper describes an investigation on the rejection of the divalent anions from ZnSO4 using LPROMs, and to establish the effect of operating pressure, feed concentration and temperature on metal removal, then to compare with the monovalent anions, ZnCl2. A bench-scale spiral wound configuration of sulphonated polysulphone low pressure reverse osmosis membrane (LPROM) was used to remove heavy metals at various operating conditions, i.e. operating conditions, solute concentrations and temperature. The results show that the higher the operating pressure the greater will be the permeate flux for heavy metals from both mono- and divalent anions. At low operating pressure however, metals from the divalent anions give a higher permeate flux than did the monovalent anions. Permeate flux in both mono- and divalent anions is shown to be subsequently increased by a decrease of the concentration of feed solution. Regarding metal removal, metals from divalent anions were rejected more effectively than monovalent anions at all levels of feed concentration.


2013 ◽  
Vol 68 (7) ◽  
pp. 1512-1519 ◽  
Author(s):  
Changwei Zhao ◽  
Weihong Fan ◽  
Tao Wang ◽  
Deyin Hou ◽  
Zhaokun Luan

Spiramycin removal from wastewater using four nanofiltration (NF) membranes (NF270, NF90, ESNA1-K1 and ESNA1-LF2-LD) was studied. The effects of operating pressure, feed temperature, feed concentration, cation and anion ions on the permeate flux rate and spiramycin rejection were investigated. The results show that increasing operating pressure resulted in the increase of both permeate flux and spiramycin rejection. The flux rate increased almost linearly with temperature, while the spiramycin rejection decreased. The permeate flux rate declined relatively with increasing feed concentration of spiramycin for NF270 and ESNA1-LF2-LD membranes compared with NF90 and ESNA1-K membranes. The presence of cations reduced spiramycin rejection, with the strength of influence for the NF270 NF membrane following the order Mg2+>Ca2+>K+. The presence of anions also resulted in decreased spiramycin rejection, the strength of the effect following the order NO3−>Cl−>SO42− for the NF270 membrane.


2014 ◽  
Vol 625 ◽  
pp. 639-643
Author(s):  
Ma Umaira Suhaddha Zainal Abidin ◽  
Hilmi Mukhtar ◽  
Maizatul Shima Shaharun

Natural gas is one of the energy sources in the world. It consists of predominantly methane (CH4), ethane (C2H6), ethylene (C2H4), propane (C3H8) butane (C4H10), pentane (C5H12) and some impurities particularly hydrogen sulfide (H2S) and carbon dioxide (CO2) that need to be treated prior utilized. Amine solution such as diisopropanolamine (DIPA) is used to remove the CO2 and H2S in natural gas processing. However a small amount of amines losses in some unit operations causing amines discharged into the effluent wastewater. The objective of this study are to investigate the flux of water and permeate, and rejection of DIPA solution across reverse osmosis, nanofiltration and ultrafiltration membrane which known as AFC99, AFC40 and CA202 respectively. This paper studies the effect of cross-flow velocity on permeate flux and the effect of feed concentration on observed rejection of DIPA solution across AFC99, AFC40 and CA202 over the operating pressure. The results showed a significant role of cross-flow velocity on membrane performance from aspect flux obtained and phenomenon of concentration polarization that would increase the transport resistance of permeate flow. The highest flux can be achieved by high cross-flow velocity. While for rejection study, rejection of all membranes increase with increase of pressure yet decrease with concentration.


2001 ◽  
Vol 43 (10) ◽  
pp. 233-240 ◽  
Author(s):  
I. Koyuncu ◽  
E. Kural ◽  
D. Topacik

This paper presents the pilot scale membrane separation studies on dyehouse effluents of textile industry. Nanofiltration (NF) membranes which have 2 m2 of surface area were evaluated for membrane fouling on permeate flux and their suitability in separating COD, color and conductivity in relation to operating pressure and feed concentration from textile industry dyehouse effluents. Successive batch runs demonstrated that any serious membrane fouling was not experienced for NF membrane tested in treating this type of wastewater. The permeate flux was found to increase significantly with operating pressure. Flux decreased with increasing recovery rate. The overall removal efficiencies of COD, color and conductivity were found as greater than 97%. COD was lower than 10 mg/l at 12 bar pressures. Permeate COD was also increased with increasing recovery and COD was 30 mg/l with recovery of 80%. Almost complete color removal was achieved with nanofiltration membrane. Color value was also decreased from 500 Pt-Co to 10 Pt-Co unit. This significant reduction in color and COD makes possible the recycle of the permeate in the dyehouse. Permeate conductivity was decreasing with increasing pressure and retention of conductivity increases with increasing pressures. This phenomenon is expected from the analysis of conductivity mass transport model. Economical analysis have been done and the total estimated cost will be 0.81 $/m3 based on 1000 m3/day of and this value is very economical for Istanbul City due to increasing industrial water supply tariffs.


2018 ◽  
Vol 69 (5) ◽  
pp. 1149-1151
Author(s):  
Laura Ruxandra Zicman ◽  
Elena Neacsu ◽  
Felicia Nicoleta Dragolici ◽  
Catalin Ciobanu ◽  
Gheorghe Dogaru ◽  
...  

Ultrafiltration of untreated and pretreated aqueous radioactive wastes was conducted using a spiral-wound polysulphonamide membrane. The influence of process factors on its performances was experimental studied and predicted. Permeate volumetric flux and permeate total suspended solids (TSS) were measured at different values of feed flow rate (7 and 10 m3/h), operating pressure (0.1-0.4 MPa), and feed TSS (15 and 60 mg/L). Permeate flux (42-200 L/(m2�h)) increased with feed flow rate and operating pressure as well as it decreased with an increase in feed TSS, whereas permeate TSS (0.1-33.2 mg/L) exhibited an opposite trend. A 23 factorial plan was used to establish correlations between dependent and independent variables of ultrafiltration process.


1989 ◽  
Vol 54 (1) ◽  
pp. 91-101 ◽  
Author(s):  
Milan Stakić ◽  
Slobodan Milonjić ◽  
Vladeta Pavasović ◽  
Zoja Ilić

Ultrafiltration of three laboratory made silica and two commercial silica sols was studied using Amicon YC membrane in a 200 ml capacity batch-cell. The effect of silica particle size, stirring conditions, pressure, pH and silica contents on ultrafiltration was investigated. The results obtained indicate that the smaller particles have, disregarding the stirring conditions, lower filtration flux. The differences observed in filtration flux are more pronounced in the conditions without stirring. The obtained value of the membrane resistance is independent of the conditions investigated (stirring, pressure, pH, silica contents and particle size). The values of the resistance of polarized solids, specific resistance, and the mass of gel per membrane surface unit were calculated for all experimental conditions.


Author(s):  
Laslo Šereš ◽  
Ljubica Dokić ◽  
Bojana Ikonić ◽  
Dragana Šoronja-Simović ◽  
Miljana Djordjević ◽  
...  

Cross-flow microfiltration using ceramic tubular membrane was applied for treatment of steepwater from corn starch industry. Experiments are conducted according to the faced centered central composite design at three different transmembrane pressures (1, 2 and 3 bar) and cross-flow velocities (100, 150 and 200 L/h) with and without the usage of Kenics static mixer. For examination of the influence of the selected operating conditions at which usage of the static mixer is justified, a response surface methodology and desirability function approach were used. Obtained results showed improvement in the average permeate flux by using Kenics static mixer for 211 % to 269 % depending on experimental conditions when compared to the system without the static mixer. As a result of optimization, the best results considering flux improvement as well as reduction of specific energy consumption were obtained at low transmembrane pressure and lower feed cross-flow rates.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 248
Author(s):  
Saad A. Aljlil

In this study, a red clay/nano-activated carbon membrane was investigated for the removal of oil from industrial wastewater. The sintering temperature was minimized using CaF2 powder as a binder. The fabricated membrane was characterized by its mechanical properties, average pore size, and hydrophilicity. A contact angle of 67.3° and membrane spore size of 95.46 nm were obtained. The prepared membrane was tested by a cross-flow filtration process using an oil-water emulsion, and showed a promising permeate flux and oil rejection results. During the separation of oil from water, the flux increased from 191.38 to 284.99 L/m2 on increasing the applied pressure from 3 to 6 bar. In addition, high water permeability was obtained for the fabricated membrane at low operating pressure. However, the membrane flux decreased from 490.28 to 367.32 L/m2·h due to oil deposition on the membrane surface; regardless, the maximum oil rejection was 99.96% at an oil concentration of 80 NTU and a pressure of 5 bar. The fabricated membrane was negatively charged, as were the oil droplets, thereby facilitating membrane purification through backwashing. The obtained ceramic membrane functioned well as a hydrophilic membrane and showed potential for use in oil wastewater treatment.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 937
Author(s):  
Anna Trusek ◽  
Maciej Wajsprych ◽  
Andrzej Noworyta

Although the time for operating mines and coking plants in many countries is coming to an end due to climate change, we must still ensure that the pollution generated by this source of the economy is minimized. Despite the several stages of treatment of the coke-oven effluent, completed with nitrification and denitrification processes preceding final sedimentation, the stream obtained does not meet the requirements of water for coke quenching. That is why the stream after biodegradation and sedimentation was treated on membrane units to ensure water reusing in the coking plant. As the subjected stream contained both solid and dissolved pollutants, a two-stage system was proposed: low- and high-pressure membrane filtration. Industrial modules were tested on pilot units operating under industrial plant conditions. In the case of the ultrafiltration process, all the tested ultrafiltration modules fulfilled the primary task. All of them separated almost completely the turbidities present in the stream, which would have disturbed the operation of the high-pressure plant. Considering the decrease in permeate flux and the possibility of cleaning, a PCI membrane made of PVDF tubes with a diameter of 12.5 mm and pore size of 20 μm was selected. Regarding the high-pressure membrane filtration, the reverse osmosis membrane was significantly better in the removal efficiency of both organic and inorganic dissolved substances. An operating pressure of 3 MPa was chosen for the system. Hence, membrane processes, which are not used as stand-alone treatment units for coke-oven effluents, function well as a final treatment stage.


Sign in / Sign up

Export Citation Format

Share Document