Not all elderly hypertensives need treatment

1978 ◽  
Vol 16 (19) ◽  
pp. 75-76

In all patients in whom it has been studied arterial pressure rises with age but systolic pressure rises more than diastolic pressure because arteries become less elastic. Raised systolic and diastolic pressures are both associated with higher cardiovascular mortality at all pressures and at all ages up to about 70.1 Systolic pressures predict risk better in the elderly as well as in middle age.2 The association with stroke and heart failure is much stronger than with myocardial infarction, especially in the elderly.2 However in otherwise healthy people over 70, neither systolic nor diastolic pressures are related to subsequent survival.3

2001 ◽  
Vol 280 (3) ◽  
pp. H1129-H1135 ◽  
Author(s):  
Mohamed A. Gaballa ◽  
Andrea Eckhart ◽  
Walter J. Koch ◽  
Steven Goldman

We identified abnormalities in the vascular β-adrenergic receptor (β-AR) signaling pathway in heart failure after myocardial infarction (MI). To examine these abnormalities, we measured β-AR-mediated hemodynamics, vascular reactivity, and the vascular β-AR molecular signaling components in rats with heart failure after MI. Six weeks after MI, these rats had an increased left ventricular (LV) end-diastolic pressure, decreased LV systolic pressure, and decreased rate of LV pressure change (dP/d t). LV dP/d t responses to isoproterenol were shifted downward, although the responses for systemic vascular resistance were shifted upward in heart failure rats ( P < 0.05). Isoproterenol- and IBMX-induced vasorelaxations were blunted in heart failure rats ( P< 0.05) with no change in the forskolin-mediated vasorelaxation. These changes were associated with the following alterations in β-AR signaling ( P < 0.05): decreases in β-AR density (aorta: 58.7 ± 6.0 vs. 35.7 ± 1.9 fmol/mg membrane protein; carotid: 29.6 ± 5.6 vs. 18.0 ± 3.9 fmol/mg membrane protein, n = 5), increases in G protein-coupled receptor kinase activity levels (relative phosphorimage counts of 191 ± 39 vs. 259 ± 26 in the aorta and 115 ± 30 vs. 202 ± 7 in the carotid artery, n = 5), and decreases in cGMP and cAMP in the carotid artery (0.85 ± 0.10 vs. 0.31 ± 0.06 pmol/mg protein and 2.3 ± 0.3 vs. 1.2 ± 0.1 pmol/mg protein, n = 5) with no change in Gαs or Gαi in the aorta. Thus in heart failure there are abnormalities in the vascular β-AR system that are similar to those seen in the myocardium. This suggests a common neurohormonal mechanism and raises the possibility that treatment in heart failure focused on the myocardium may also affect the vasculature.


2019 ◽  
Vol 22 (2) ◽  
pp. E107-E111
Author(s):  
Hongwei Shi ◽  
Zhenming Jiang ◽  
Teng Wang ◽  
Yongting Chen ◽  
Feng Cao

Background: The status of the swelling-activated chloride channel (ICl, swell) during heart failure remains unclear. This study aimed to investigate whether the ICl, swell activity is altered during heart failure and to determine how the ICl, swell influences atrial arrhythmias of the failing heart. Methods: We established a heart failure rabbit model and analyzed the hemodynamic indicators 8 weeks after myocardial infarction, which include left ventricular systolic pressure (LVSP) and left ventricular end-diastolic pressure (LVDEP). Five untreated rabbits and 5 receiving a sham operation served as the control group. Left auricular appendage tissues were obtained and CLCN3 mRNA/CLCN3 protein expression levels were examined by using reverse transcription–polymerase chain reaction and Western blot, respectively. Results: Compared to the control group, the heart failure group showed a significantly decreased LVSP (14.2 ± 0.27 versus 16.9 ± 0.86 kPa, P <.05)and elevated LVDEP (2.49 ± 0.30 versus 0.15 ± 0.03 kPa, P <.05), indicating that myocardial infarction leads to progressive heart failure of rabbits in the heart failure group. CLCN3 mRNA and CLCN3 protein expression were both significantly elevated in the heart failure group compared to the control group (P <.05). Conclusion: In sum, we propose that the dynamic nature of ICl, swell upregulation may contribute to the elevated expression of CLCN3 mRNA and CLCN3 protein, resulting in myocardial cell remodeling induced by heart failure. However, further study is needed to investigate the potential functions of ICl, swell, especially the relation between ICl, swell augmentation and arrhythmia after heart failure.


2019 ◽  
Vol 39 (12) ◽  
Author(s):  
Junjie He ◽  
Ying Lu ◽  
Xiaozheng Song ◽  
Xiaoxuan Gong ◽  
Yong Li

Abstract The aim of the present study was to determine the roles of microRNA (miR)-146a on myocardial infarction (MI)-induced heart failure and cardiac remodeling. Experiments were carried out in Sprague-Dawley rats treated with ligation of left coronary artery to induce heart failure, and in primary neonatal rat cardiac fibroblasts (CFs) and cardiomyocytes treated with angiotensin (Ang) II. Four weeks after MI, rats were injected with miR-146a antagomiR or agomiR via tail vein. After 2 weeks of injection, the rats were killed. In MI rats, left ventricle (LV) ejection fraction and fractional shortening were reduced, and LV volumes in diastole and systole were increased, which were reversed by miR-146a antagomiR, and further exacerbated after miR-146a agomiR treatment. Administration of miR-146a antagomiR improved the decreases of LV ±dp/dtmax and LV systolic pressure (LVSP), and the increase in LV end-diastolic pressure (LVEDP) of MI rats, but miR-146a agomiR deteriorated the LV ±dp/dtmax, LVSP and LVEDP. The increases in the levels of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), collagen I and collagen III in the heart, and ST2 and norepinephrine in the serum of MI rats were inhibited by miR-146a antagomiR, but aggravated after miR-146a agomiR treatment. The increases of collagen I and collagen III levels induced by Ang II in CFs, and the increases of ANP and BNP levels induced by Ang II in cardiomyocytes were inhibited by miR-146a antagomiR, but aggravated by miR-146a agomiR. These results demonstrated that inhibition of miR-146a improved cardiac dysfunction and cardiac remodeling in heart failure rats.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
S. J Sangaralingham ◽  
Tomoko Ichiki ◽  
Gerald E Harders ◽  
Horng H Chen ◽  
John C Burnett

Introduction: The incidence of post-myocardial infarction (MI) heart failure (HF) is increasing in the elderly. Studies have demonstrated that B-type natriuretic peptide (BNP) mediates critical cardiorenal compensatory and protective actions through guanylyl cyclase receptor A and cGMP activation. Such actions include natriuresis, diuresis and suppression of adverse cardiorenal remodelling. Hypothesis: While the mechanism of this increased risk may be multifactorial, we hypothesized that an impairment of the compensatory protective BNP/cGMP axis in both the aged kidney and heart contributes to post-MI HF. Methods: 20 month old Fischer rats were randomized into two groups: Sham-operated (S) and MI(produced by left coronary artery ligation). Cardiorenal structure and function were assessed at 4 weeks and included mean arterial pressure(MAP), LV EF, LV chamber dimension, proteinuria, sodium (Na) excretion and fibrosis by picrosirius red staining. Plasma BNP and cGMP levels were assessed by RIA. Data presented as mean±SE,*P<0.05. Results: LV EF (S:78±2, MI:46±3 %*) was significantly reduced in aged MI rats, despite no difference in LV fibrosis in the remote region and no change in MAP compared to aged sham rats. Post-MI HF was evident and characterized by a significant reduction in Na excretion (S:0.20±0.03, MI:0.13±0.01 mEq/day*) as well as significant increases in LV dilatation (S:7.2±0.1, MI:8.3±0.2 mm*) and cardiac hypertrophy (S:2.78±0.06, MI:3.25±0.16 mg/g*) in aged MI rats. Notably, plasma BNP (S:9±1, MI:11±2 pg/ml) failed to increase and plasma cGMP (S:44±6, MI:27±3 mm*) was significantly reduced in the MI group. Importantly, MI in the aged rat resulted in a significant loss in total renal mass (S:2739±83, MI:2351±68 mg*), consistent with renal atrophy, while no changes in proteinuria or renal fibrosis were observed. Conclusions: Post-MI dysfunction of the protective BNP/cGMP axis in the aged rat was associated with various cardiorenal abnormalities including renal atrophy, which may contribute to the pathophysiology of HF. This pre-clinical model provides new insights into post-MI HF and may be used to examine therapeutic strategies using natriuretic peptides to protect the heart and kidney in the elderly post-MI population.


2003 ◽  
Vol 228 (7) ◽  
pp. 811-817 ◽  
Author(s):  
Laila Elsherif ◽  
Raymond V. Ortines ◽  
Jack T. Saari ◽  
Y. James Kang

Copper Deficiency (CuD) leads to hypertrophic cardiomyopathy in various experimental models. The morphological, electrophysiological, and molecular aspects of this hypertrophy have been under investigation for a long time. However the transition from compensated hypertrophy to decompensated heart failure has not been investigated in the study of CuD. We set out to investigate the contractile and hemodynamic parameters of the CuD mouse heart and to determine whether heart failure follows hypertrophy in the CuD heart. Dams of FVB mice were fed CuD or copper-adequate (CuA) diet starting from the third day post delivery and the weanling pups were fed the same diet for a total period of 5 weeks (pre- and postweanling). At week 4, the functional parameters of the heart were analyzed using a surgical technique for catheterizing the left ventricle. A significant decrease in left ventricle systolic pressure was observed with no significant change in heart rate, and more importantly contractility as measured by the maximal rate of left ventricular pressure rise (+dP/dt) and decline (−dP/dt) were significantly depressed in the CuD mice. However, left ventricle end diastolic pressure was elevated, and relaxation was impaired in the CuD animals; the duration of relaxation was prolonged. In addition to significant changes in the basal level of cardiac function, CuD hearts had a blunted response to the stimulation of the β-adrenergic agonist isoproterenol. Furthermore, morphological analysis revealed increased collagen accumulation in the CuD hearts along with lipid deposition. This study shows that CuD leads to systolic and diastolic dysfunction in association with histopathological changes, which are indices commonly used to diagnose congestive heart failure.


Biomolecules ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 60 ◽  
Author(s):  
Tanja Zeller ◽  
Christoph Waldeyer ◽  
Francisco Ojeda ◽  
Renate Schnabel ◽  
Sarina Schäfer ◽  
...  

Acute myocardial infarction remains a leading cause of morbidity and mortality. While iron deficient heart failure patients are at increased risk of future cardiovascular events and see improvement with intravenous supplementation, the clinical relevance of iron deficiency in acute coronary syndrome remains unclear. We aimed to evaluate the prognostic value of iron deficiency in the acute coronary syndrome (ACS). Levels of ferritin, iron, and transferrin were measured at baseline in 836 patients with ACS. A total of 29.1% was categorized as iron deficient. The prevalence of iron deficiency was clearly higher in women (42.8%), and in patients with anemia (42.5%). During a median follow-up of 4.0 years, 111 subjects (13.3%) experienced non-fatal myocardial infarction (MI) and cardiovascular mortality as combined endpoint. Iron deficiency strongly predicted non-fatal MI and cardiovascular mortality with a hazard ratio (HR) of 1.52 (95% confidence interval (CI) 1.03-2.26; p = 0.037) adjusted for age, sex, hypertension, smoking status, diabetes, hyperlipidemia, body-mass-index (BMI) This association remained significant (HR 1.73 (95% CI 1.07–2.81; p = 0.026)) after an additional adjustment for surrogates of cardiac function and heart failure severity (N-terminal pro B-type natriuretic peptide, NT-proBNP), for the size of myocardial necrosis (troponin), and for anemia (hemoglobin). Survival analyses for cardiovascular mortality and MI provided further evidence for the prognostic relevance of iron deficiency (HR 1.50 (95% CI 1.02–2.20)). Our data showed that iron deficiency is strongly associated with adverse outcome in acute coronary syndrome.


Author(s):  
Lucas Capalonga ◽  
Cintia Laura Pereira Araújo ◽  
Vítor Scotta Hentschke ◽  
Douglas Dalcin Rossato ◽  
Edson Quagliotto ◽  
...  

The aim was to analyze the effect of neuromuscular electrical stimulation (NMES) and photobiomodulation (PBMT) on cardiovascular parameters, hemodynamic function, arterial baroreflex sensitivity (BRS), and autonomic balance (ANS) of rats with heart failure (HF). Male Wistar rats (220-290g) were organized into five groups: Sham (n=6), Control-HF (n=5), NMES-HF (n=6), PBMT-HF (n=6), and NMES+PBMT-HF (n=6). Myocardial infarction (MI) was induced by left coronary artery ligation. Animals were subjected to an eight-week NMES and PBMT protocol. Statistical analysis with the General Linear Model (GLM) followed by the Bonferroni post hoc test. Rats of NMES-HF group showed a higher MI area than Control-HF group (P=0.003), PBMT-HF (P=0.002), and NMES+PBMT-HF (P=0.012). NMES-HF and NMES+PBMT-HF showed higher pulmonary congestion (P=0.004 and P=0.02), and lower systolic pressure (P=0.019 and P=0.002) than Sham group. NMES+PBMT-HF showed lower mean arterial pressure (P=0.02) than Sham group. Control-HF showed a higher heart rate than NMES-HF and NMES+PBMT-HF (P=0.017 and P=0.013). There was no difference in the BRS and ANS variables between groups. In conclusion, eight-week NMES isolated or associated with PBMT protocol reduced basal heart rate, systolic and mean arterial pressure, without influence on baroreflex sensibility and autonomic control, and no effect of PBMT was seen in rats with HF.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Quan-wei Wang ◽  
Xiao-feng Yu ◽  
Hua-li Xu ◽  
Xue-zhong Zhao ◽  
Da-yuan Sui

Objective. Panax ginseng is used widely for treatment of cardiovascular disorders in China. Ginsenoside Re is the main chemical component of P. ginseng. We aimed to investigate the protective effect of ginsenoside Re on isoproterenol-induced myocardial fibrosis and heart failure in rats. Methods. A model of myocardial fibrosis and heart failure was established by once-daily subcutaneous injection of isoproterenol (5 mg/kg/day) to rats for 7 days. Simultaneously, rats were orally administrated ginsenoside Re (5 or 20 mg/kg) or vehicle daily for 4 weeks. Results. Isoproterenol enhanced the heart weight, myocardial fibrosis, and hydroxyproline content in rat hearts. Ginsenoside Re inhibited (at least in part) the isoproterenol-induced increase in heart weight, myocardial fibrosis, and hydroxyproline content. Compared with the isoproterenol group, treatment with ginsenoside Re ameliorated changes in left ventricular systolic pressure, left ventricular end diastolic pressure, and the positive and negative maximal values of the first derivative of left ventricular pressure. Ginsenoside Re administration also resulted in decreased expression of transforming growth factor (TGF)-β1 in serum and decreased expression of Smad3 and collagen I in heart tissue. Conclusion. Ginsenoside Re can improve isoproterenol-induced myocardial fibrosis and heart failure by regulation of the TGF-β1/Smad3 pathway.


2020 ◽  
Vol 13 (11) ◽  
Author(s):  
Vivek Y. Reddy ◽  
Jan Petrů ◽  
Filip Málek ◽  
Lee Stylos ◽  
Steve Goedeke ◽  
...  

Background: Morbidity and mortality outcomes for patients admitted for acute decompensated heart failure are poor and have not significantly changed in decades. Current therapies are focused on symptom relief by addressing signs and symptoms of congestion. The objective of this study was to test a novel neuromodulation therapy of stimulation of epicardial cardiac nerves passing along the posterior surface of the right pulmonary artery. Methods: Fifteen subjects admitted for defibrillator implantation and ejection fraction ≤35% on standard heart failure medications were enrolled. Through femoral arterial access, high fidelity pressure catheters were placed in the left ventricle and aortic root. After electro anatomic rendering of the pulmonary artery and branches, either a circular or basket electrophysiology catheter was placed in the right pulmonary artery to allow electrical intravascular stimulation at 20 Hz, 4 ms pulse width, and ≤20 mA. Changes in maximum positive dP/dt (dP/dt Max ) indicated changes in ventricular contractility. Results: Of 15 enrolled subjects, 5 were not studied due to equipment failure or abnormal pulmonary arterial anatomy. In the remaining subjects, dP/dt Max increased significantly by 22.6%. There was also a significant increase in maximum negative dP/dt (dP/dt Min ), mean arterial pressure, systolic pressure, diastolic pressure, and left ventricular systolic pressure. There was no significant change in heart rate or left ventricular diastolic pressure. Conclusions: In this first-in-human study, we demonstrated that in humans with stable heart failure, left ventricular contractility could be accentuated without an increase in heart rate or left ventricular filling pressures. This benign increase in contractility may benefit patients admitted for acute decompensated heart failure.


Sign in / Sign up

Export Citation Format

Share Document