scholarly journals CUMS and dexamethasone induce depression-like phenotypes in mice by differentially altering gut microbiota and triggering macroglia activation

2021 ◽  
Vol 34 (6) ◽  
pp. e100529
Author(s):  
Jing Wu ◽  
Jinhang Li ◽  
Chhetri Gaurav ◽  
Usman Muhammad ◽  
Yantian Chen ◽  
...  

BackgroundAlthough the link between gut microbiota and depression has been suggested, changes of gut microbiota vary largely among individuals with depression.AimsExplore the heterogeneity of microbiota–gut–brain axis and new pathogenic characteristics in murine models of depression.MethodsAdolescent female mice were randomly divided into control (CON) group (n=10), chronic unexpected mild stress (CUMS) group (n=15) and dexamethasone (DEX) group (n=15). Mice in the DEX group were gavaged twice a day with 0.2 mg/kg of DEX for 5 weeks, whereas CON mice were given the same amount of solvent. Mice in the CUMS group were exposed to stressors. After behavioural evaluations, all mice were sacrificed for harvesting tissues and blood samples. Enzyme-linked immunosorbent assay (ELISA) was conducted for measuring levels of corticosterone (CORT) and interleukin-1β (IL-1β) in sera, whereas levels of protein expression in colon and hippocampal tissues were examined by western blot. Faecal microbial communities were analysed by sequencing 16S rDNAs.ResultsMice in CUMS and DEX groups exhibited severe depression-like behaviours. Compared with CON mice, CUMS-exposed mice showed a significant increase in both α and β diversity. Prevotellaceae and Desulfovibrio were enriched, whereas Bacilli were decreased in the faeces of mice in the CUMS group. DEX-treated mice had a decrease in the abundance of Clostridium XVIII. Levels of occludin in colon tissue of DEX-treated mice were reduced. Relative to mice in the CON and CUMS groups, DEX-treated mice contained higher serum levels of CORT and IL-1β. Compared with CON mice, mice in the DEX and CUMS groups had higher levels of IL-1β in sera and lower levels of glial fibrillary acidic protein (GFAP), Nestin, Synapsin-1 and P2Y12 receptor in the hippocampus.ConclusionsChanges of gut microbiota diversity, intestinal integrity and neuroinflammation in the brain contribute to CUMS-induced depression, whereas pathobionts and excessive immunosuppression with damaged neuronal synapses is a basis of the DEX-induced depression.

2020 ◽  
Vol 21 (21) ◽  
pp. 7863
Author(s):  
Corentine Alauzet ◽  
Lisiane Cunat ◽  
Maxime Wack ◽  
Laurence Lanfumey ◽  
Christine Legrand-Frossi ◽  
...  

During deep-space travels, crewmembers face various physical and psychosocial stressors that could alter gut microbiota composition. Since it is well known that intestinal dysbiosis is involved in the onset or exacerbation of several disorders, the aim of this study was to evaluate changes in intestinal microbiota in a murine model used to mimic chronic psychosocial stressors encountered during a long-term space mission. We demonstrate that 3 weeks of exposure to this model (called CUMS for Chronic Unpredictable Mild Stress) induce significant change in intracaecal β-diversity characterized by an important increase of the Firmicutes/Bacteroidetes ratio. These alterations are associated with a decrease of Porphyromonadaceae, particularly of the genus Barnesiella, a major member of gut microbiota in mice and humans where it is described as having protective properties. These results raise the question of the impact of stress-induced decrease of beneficial taxa, support recent data deduced from in-flight experimentations and other ground-based models, and emphasize the critical need for further studies exploring the impact of spaceflight on intestinal microbiota in order to propose strategies to countermeasure spaceflight-associated dysbiosis and its consequences on health.


2020 ◽  
Author(s):  
Corentine Alauzet ◽  
Lisiane Cunat ◽  
Maxime Wack ◽  
Laurence Lanfumey ◽  
Christine Legrand-Frossi ◽  
...  

Abstract Background: During deep-space travels, crewmembers face various physical and psychosocial stressors that could alter gut microbiota composition. Since it is well known that intestinal dysbiosis is involved in the onset or exacerbation of several disorders, the aim of this study was to evaluate changes in intestinal microbiota in a ground-based murine model mimicking psychosocial stressors encountered during a long-term space mission.Results: We demonstrate that 3 weeks of exposure to Chronic Unpredictable Mild Stress (CUMS) induce significant change in intracaecal β-diversity characterized by an important increase of the Firmicutes/Bacteroidetes ratio. These stress-induced alterations are associated with a decrease of Porphyromonadaceae, particularly of the genus Barnesiella that is a major member of gut microbiota in mice, but also in human, where it is described as having protective properties.Conclusions: These results raise the question of the impact of stress-induced decrease of beneficial taxa, support recent data obtained with in-flight experimentations or gravity change models, and emphasize the critical need for further studies exploring the impact of spaceflight on intestinal microbiota in order to propose strategies to countermeasure spaceflight-associated dysbiosis and its consequences on health.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wenzhi Hao ◽  
Jiajia Wu ◽  
Naijun Yuan ◽  
Lian Gong ◽  
Junqing Huang ◽  
...  

Disturbance of the gut microbiota plays an essential role in mental disorders such as depression and anxiety. Xiaoyaosan, a traditional Chinese medicine formula, has a wide therapeutic spectrum and is used especially in the management of depression and anxiety. In this study, we used an antibiotic-induced microbiome-depleted (AIMD) mouse model to determine the possible relationship between imbalance of the intestinal flora and behavioral abnormalities in rodents. We explored the regulatory effect of Xiaoyaosan on the intestinal flora and attempted to elucidate the potential mechanism of behavioral improvement. We screened NLRP3, ASC, and CASPASE-1 as target genes based on the changes in gut microbiota and explored the effect of Xiaoyaosan on the colonic NLRP3 pathway. After Xiaoyaosan intervention, AIMD mice showed a change in body weight and an improvement in depressive and anxious behaviors. Moreover, the gut flora diversity was significantly improved. Xiaoyaosan increased the abundance of Lachnospiraceae in AIMD mice and decreased that of Bacteroidaceae, the main lipopolysaccharide (LPS)-producing bacteria, resulting in decreased levels of LPS in feces, blood, and colon tissue. Moreover, serum levels of the inflammatory factor, IL-1β, and the levels of NLRP3, ASC, and CASPASE-1 mRNA and DNA in the colon were significantly reduced. Therefore, Xiaoyaosan may alleviate anxiety and depression by modulating the gut microbiota, correcting excessive LPS release, and inhibiting the immoderate activation of the NLRP3 inflammasome in the colon.


Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 99
Author(s):  
Yangbo Zhang ◽  
Jianan Huang ◽  
Yifan Xiong ◽  
Xiangna Zhang ◽  
Yong Lin ◽  
...  

The number of depressed people has increased worldwide. Dysfunction of the gut microbiota has been closely related to depression. The mechanism by which jasmine tea ameliorates depression via the brain-gut-microbiome (BGM) axis remains unclear. Here, the effects of jasmine tea on rats with depressive-like symptoms via the gut microbiome were investigated. We first established a chronic unpredictable mild stress (CUMS) rat model to induce depressive symptoms and measured the changes in depression-related indicators. Simultaneously, the changes in gut microbiota were investigated by 16S rRNA sequencing. Jasmine tea treatment improved depressive-like behaviors and neurotransmitters in CUMS rats. Jasmine tea increased the gut microbiota diversity and richness of depressed rats induced by CUMS. Spearman’s analysis showed correlations between the differential microbiota (Patescibacteria, Firmicutes, Bacteroidetes, Spirochaetes, Elusimicrobia, and Proteobacteria) and depressive-related indicators (BDNF, GLP-1, and 5-HT in the hippocampus and cerebral cortex). Combined with the correlation analysis of gut microbiota, the result indicated that jasmine tea could attenuate depression in rats via the brain- gut-microbiome axis.


2020 ◽  
Author(s):  
Junyi Sun ◽  
Xianfei Ding ◽  
Shaohua Liu ◽  
Xiaoguang Duan ◽  
Huoyan Liang ◽  
...  

Abstract Background We hypothesized that adipose-derived mesenchymal stem cells (ADMSCs) may ameliorate sepsis-induced acute lung injury (ALI) by increasing or decreasing microorganism populations in the gut microbiota, such as that of Firmicutes and Bacteroidetes. Methods A total of 60 male adult Sprague-Dawley (SD) rats were separated into three groups: the sham control (SC) group, the sepsis induced by cecal ligation and puncture (CLP) group, and the ADMSC treatment (CLP-ADMSCs) group, in which rats underwent the CLP procedure and then received 1 × 106 ADMSCs. Rats were sacrificed 24 hours after the SC or CLP procedures. To investigate the relationship between sepsis-induced ALI and the gut microbiota, rat lungs were histologically evaluated using hematoxylin and eosin (H&E) staining, serum levels of pro-inflammatory factors were detected using enzyme-linked immunosorbent assay (ELISA), and fecal samples were collected and analyzed using 16S rDNA sequencing. Results The serum levels of inflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-6, were significantly increased in rats after the CLP procedure, but were significantly decreased in rats treated with ADMSCs. Histological evaluation of the rat lungs yielded results consistent with the changes in IL-6 levels among all groups. Treatment with ADMSCs significantly increased the diversity of the gut microbiota in rats with sepsis. The principal coordinates analysis (PCoA) results showed that there was a significant difference between the gut microbiota of the CLP-ADMSCs group and that of the CLP group. In rats with sepsis, the proportion of Bacteroides related to energy consumption and Escherichia–Shigella related to lipopolysaccharide production increased, and the proportion of Akkermansia related to the regulation of intestinal mucosal thickness and the maintenance of intestinal barrier function decreased. Furthermore, the proportion of Firmicutes related to energy storage, such as Verrucomicrobia, decreased. Intervention with ADMSCs increased the proportion of beneficial bacteria, reduced the proportion of harmful bacteria, and normalized the gut microbiota, thus, improving the sepsis-induced ALI. Conclusions Therapeutically administered ADMSCs may improve CLP-induced ALI by regulating the gut microbiota, providing a potential mechanism by which mesenchymal stem cells treat sepsis.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Junyi Sun ◽  
Xianfei Ding ◽  
Shaohua Liu ◽  
Xiaoguang Duan ◽  
Huoyan Liang ◽  
...  

Abstract Background We hypothesized that adipose-derived mesenchymal stem cells (ADMSCs) may ameliorate sepsis-induced acute lung injury (ALI) and change microorganism populations in the gut microbiota, such as that of Firmicutes and Bacteroidetes. Methods A total of 60 male adult Sprague-Dawley (SD) rats were separated into three groups: the sham control (SC) group, the sepsis induced by cecal ligation and puncture (CLP) group, and the ADMSC treatment (CLP-ADMSCs) group, in which rats underwent the CLP procedure and then received 1 × 106 ADMSCs. Rats were sacrificed 24 h after the SC or CLP procedures. To study the role of ADMSCs during ALI caused by sepsis and examine the impact of ADMSCs on the gut microbiome composition, rat lungs were histologically evaluated using hematoxylin and eosin (H&E) staining, serum levels of pro-inflammatory factors were detected using enzyme-linked immunosorbent assay (ELISA), and fecal samples were collected and analyzed using 16S rDNA sequencing. Results The serum levels of inflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-6, were significantly increased in rats after the CLP procedure, but were significantly decreased in rats treated with ADMSCs. Histological evaluation of the rat lungs yielded results consistent with the changes in IL-6 levels among all groups. Treatment with ADMSCs significantly increased the diversity of the gut microbiota in rats with sepsis. The principal coordinates analysis (PCoA) results showed that there was a significant difference between the gut microbiota of the CLP-ADMSCs group and that of the CLP group. In rats with sepsis, the proportion of Escherichia–Shigella (P = 0.01) related to lipopolysaccharide production increased, and the proportion of Akkermansia (P = 0.02) related to the regulation of intestinal mucosal thickness and the maintenance of intestinal barrier function decreased. These changes in the gut microbiota break the energy balance, aggravate inflammatory reactions, reduce intestinal barrier functions, and promote the translocation of intestinal bacteria. Intervention with ADMSCs increased the proportion of beneficial bacteria, reduced the proportion of harmful bacteria, and normalized the gut microbiota. Conclusions Therapeutically administered ADMSCs ameliorate CLP-induced ALI and improves gut microbiota, which provides a potential therapeutic mechanism for ADMSCs in the treatment of sepsis.


2020 ◽  
Author(s):  
Jun-Yi Sun ◽  
Xian-Fei Ding ◽  
Shao-Hua Liu ◽  
Xiao-Guang Duan ◽  
Huo-Yan Liang ◽  
...  

Abstract Background: We hypothesized that adipose-derived mesenchymal stem cells (ADMSCs) may ameliorate sepsis-induced acute lung injury (ALI) by increasing or decreasing microorganism populations in the gut microbiota, such as that of Firmicutes and Bacteroidetes.Methods: A total of 60 male adult Sprague-Dawley (SD) rats were separated into three groups: the sham control (SC) group, the sepsis induced by cecal ligation and puncture (CLP) group, and the ADMSC treatment (CLP-ADMSCs) group, in which rats underwent the CLP procedure and then received 1 × 106 ADMSCs. Rats were sacrificed 24 hours after the SC or CLP procedures. To investigate the relationship between sepsis-induced ALI and the gut microbiota, rat lungs were histologically evaluated using hematoxylin and eosin (H&E) staining, serum levels of pro-inflammatory factors were detected using enzyme-linked immunosorbent assay (ELISA), and fecal samples were collected and analyzed using 16S rDNA sequencing.Results: The serum levels of inflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-6, were significantly increased in rats after the CLP procedure, but were significantly decreased in rats treated with ADMSCs. Histological evaluation of the rat lungs yielded results consistent with the changes in IL-6 levels among all groups. Treatment with ADMSCs significantly increased the diversity of the gut microbiota in rats with sepsis. The principal coordinates analysis (PCoA) results showed that there was a significant difference between the gut microbiota of the CLP-ADMSCs group and that of the CLP group. In rats with sepsis, the proportion of Bacteroides related to energy consumption and Escherichia–Shigella related to lipopolysaccharide production increased, and the proportion of Akkermansia related to the regulation of intestinal mucosal thickness and the maintenance of intestinal barrier function decreased. Furthermore, the proportion of Firmicutes related to energy storage, such as Verrucomicrobia, decreased. These changes in the gut microbiota break the energy balance, aggravate inflammatory reactions, reduce intestinal barrier functions, and promote the translocation of intestinal bacteria. Intervention with ADMSCs increased the proportion of beneficial bacteria, reduced the proportion of harmful bacteria, and normalized the gut microbiota, thus, improving the sepsis-induced ALI.Conclusions: Therapeutically administered ADMSCs may improve CLP-induced ALI by regulating the gut microbiota, providing a potential mechanism by which mesenchymal stem cells treat sepsis.


1979 ◽  
Vol 90 (3) ◽  
pp. 385-393 ◽  
Author(s):  
José Borrell ◽  
Flavio Piva ◽  
Luciano Martini

ABSTRACT Drugs able to mimic or to antagonize the action of catecholamines have been implanted bilaterally into the basomedial region of the amygdala of adult castrated female rats. The animals were killed at different intervals after the implantation of the different drugs, and serum levels of LH and FSH were measured by radioimmunoassay. The results have shown that the intra-amygdalar implantation of the alpha-adrenergic blocker phenoxybenzamine induces a significant increase of the release both of LH and FSH. The implantation of the beta-adrenergic blocker propranolol brings about a rise of LH only. The dopamine receptor blocker pimozide stimulates the release of LH and exerts a biphasic effect (stimulation followed by inhibition) of FSH secretion. The alpha-receptor stimulant clonidine and the dopaminergic drug 2-Br-alpha-ergocryptine were without significant effects. From these observations it is suggested that the adrenergic signals reaching the basomedial area of the amygdala (possibly from the brain stem) may be involved in the modulation of gonadotrophin secretion.


2015 ◽  
Vol 24 (3) ◽  
pp. 293-300 ◽  
Author(s):  
Salih Boga ◽  
Huseyin Alkim ◽  
Canan Alkim ◽  
Ali Riza Koksal ◽  
Mehmet Bayram ◽  
...  

Background & Aims: Mild iron overload is frequently reported in patients with nonalcoholic fatty liver disease (NAFLD). Hepcidin is the master iron-regulatory peptide and hemojuvelin (HJV) is the key regulator of iron-dependent secretion of hepcidin. The aims of this study were to evaluate serum HJV and hepcidin levels in patients with biopsy-proven NAFLD with and without hepatic iron overload, and to identify potential associations of HJV and hepcidin with the clinical characteristics of the patients enrolled. Methods: Serum levels of HJV and hepcidin were measured in 66 NAFLD patients with (n=12) and without (n=54) iron overload, and controls (n=35) by enzyme-linked immunosorbent assay. Hemojuvelin and hepcidin levels were assessed in relation to clinical characteristics and liver histologic evaluation of the participants. Results: Significantly lower serum HJV (281.1 [239.2-353.6] vs. 584.8 [440.3-661] ng/ml, p<0.001) and similar serum hepcidin levels (60.5±31.1 vs. 55.8±11.9 ng/ml, p=0.285) were found in NAFLD patients when compared to controls. İron-overloaded NAFLD patients had significantly lower HJV (249.9 [187.6-296.3] vs. 292.9 [243-435] ng/ml, p=0.032) and significantly higher hepcidin (78.4±35.5 vs. 56.5±28.9ng/ml, p=0.027) levels than NAFLD patients without iron overload. Fibrosis stage was significantly higher in iron overloaded NAFLD group (p<0.001). Ferritin levels correlated significantly both with HOMA-IR (r=0.368, p=0.002) and fibrosis stage (r=0.571, p<0.001). Conclusions: Our findings suggest that HJV levels are low in NAFLD and even lower in iron overloaded NAFLD, while hepcidin levels are higher in NAFLD with iron overload. The gradually decreased HJV and increased hepcidin concentrations in our patients most likely reflect the physiological response to iron accumulation in the liver.


2020 ◽  
Vol 21 (15) ◽  
pp. 1666-1673 ◽  
Author(s):  
Yuanyang Dong ◽  
Jiaqi Lei ◽  
Bingkun Zhang

Background: The prevalence of inflammatory bowel disease is rapidly increasing around the world. Quercetin is a flavonoid commonly found in vegetables and fruits and has been reported to exert numerous pharmacological activities such as enhancing antioxidant capacity or suppressing inflammation. Objective: We aimed to explore whether quercetin was effective for IBD and the underlying mechanism of quercetin for the ameliorative effects on the DSS-induced colitis in mice. Methods: Thirty-six mice were randomly assigned to three treatments, including the control group (Ctr), DSS-induced colitis group (DSS) and DSS-induced colitis supplemented with 500 ppm quercetin (DQ500). Colitis was induced by DSS intake, and body weight was recorded every day. After six days administration of DSS, intestinal permeability was measured, and the liver was taken for antioxidant enzyme tests. Colonic tissue was taken for the histopathlogical score and RNA-sequencing analysis. Results: In this experiment, dietary quercetin for 500ppm alleviated the DSS-induced colitis, possibly by strengthening intestinal integrity, liver antioxidant capacity. Based on the results of the transcriptome of colon tissue, several key genes were modulated by quercetin. ERK1/2-FKBP pathway and RXR-STAT3 pathway were involved in the development of IBD, furthermore, in the down-regulation of S100a8/9, FBN2 contributed to lowering the risk of colongenesis. Conclusion: We demonstrated that dietary quercetin alleviated the DSS-induced colitis in mice. This is most likely due to its beneficial effects on intestinal integrity and modulation of several key pathways. Based on our research, quercetin was a promising candidate for IBD and its pharmaceutical effects on both IBD and colongenesis need further research.


Sign in / Sign up

Export Citation Format

Share Document