scholarly journals Pan-cancer landscape of CD274 (PD-L1) rearrangements in 283,050 patient samples, its correlation with PD-L1 protein expression, and immunotherapy response

2021 ◽  
Vol 9 (11) ◽  
pp. e003550
Author(s):  
Andrew D Kelly ◽  
Karthikeyan Murugesan ◽  
Zheng Kuang ◽  
Meagan Montesion ◽  
Jeffrey S Ross ◽  
...  

BackgroundImmune checkpoint inhibitors (ICIs) benefit patients with multiple cancer types, however, additional predictive biomarkers of response are needed. CD274 (programmed cell death ligand-1, PD-L1) gene rearrangements are positively associated with PD-L1 expression and may confer benefit to ICI, thus a pan-cancer characterization of these alterations is needed.MethodsWe analyzed 283,050 patient samples across multiple tumor types that underwent comprehensive genomic profiling for activating CD274 rearrangements and other alterations. The DAKO 22C3 Tumor Proportion Scoring (TPS) method was used for PD-L1 immunohistochemistry (IHC) testing in a small subset with available data (n=55,423). A retrospective deidentified real-world clinico-genomic database (CGDB) was examined for ICI treatment outcomes. We also report a detailed case of CD274-rearranged metastatic rectal adenocarcinoma.ResultsWe identified 145 samples with functional rearrangements in CD274. There were significant enrichments for PIK3CA, JAK2, PDCD1LG2, CREBBP, and PBRM1 co-mutations (ORs=2.1, 16.7, 17.8, 3.6, and 3.4, respectively, p<0.01). Genomic human papillomavirus (HPV)-16, Epstein-Barr virus, and mismatch repair genes also co-occurred (OR=6.2, 8.4, and 4.3, respectively, p<0.05). Median tumor mutational burden (TMB) was higher compared with CD274 wild-type samples (7.0 vs 3.5 mutations/Mb, p=1.7e-11), with disease-specific TMB enrichment in non-small cell lung, colorectal, unknown primary, and stomach cancers. PD-L1 IHC skewed toward positivity (N=39/43 samples with ≥1% positivity). Of eight patients from the CGDB, three remained on ICI treatment after 6 months. Separately, one patient with metastatic rectal adenocarcinoma experienced a pathologic complete response on chemoimmunotherapy.ConclusionsCD274 gene rearrangements are associated with increased PD-L1 IHC scores, higher TMB, and potential clinical benefit in ICI-treated patients with cancer.

2020 ◽  
Vol 9 (8) ◽  
pp. 2533
Author(s):  
Anita Mazloom ◽  
Nima Ghalehsari ◽  
Victor Gazivoda ◽  
Neil Nimkar ◽  
Sonal Paul ◽  
...  

Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of several solid and hematological malignancies. ICIs are not only able to produce long and durable responses, but also very well tolerated by patients. There are several approved indications of use of ICIs in treatment of metastatic gastrointestinal malignancies including gastric, esophageal, colorectal and hepatocellular carcinoma. In addition, ICIs can be used in microsatellite instability-high (MSI-H) and high tumor mutational burden (TMB) tumors in chemotherapy-resistant setting. Despite having good efficacy and superior safety profile, ICIs are clinically active in small subset of patients, therefore, there is a huge unmet need to enhance their efficacy and discover new predictive biomarkers. There are several ongoing clinical trials that are exploring the role of ICIs in various gastrointestinal cancers either as single agent or in combination with chemotherapy, radiation therapy, targeted agents or other immunotherapeutic agents. In this review, we discuss the published and ongoing trials for ICIs in gastrointestinal malignancies, including esophageal, gastric cancer, pancreatic, hepatocellular, biliary tract, colorectal and anal cancers. Specifically, we focus on the use of ICIs in each line of therapy and discuss the future directions of these agents in each type of gastrointestinal cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiujing He ◽  
Jing Yu ◽  
Hubing Shi

Immune-related adverse events (irAEs) can impair the effectiveness and safety of immune checkpoint inhibitors (ICIs) and restrict the clinical applications of ICIs in oncology. The predictive biomarkers of irAE are urgently required for early diagnosis and subsequent management. The exact mechanism underlying irAEs remains to be fully elucidated, and the availability of predictive biomarkers is limited. Herein, we performed data mining by combining pharmacovigilance data and pan-cancer transcriptomic information to illustrate the relationships between alternative splicing characteristics and irAE risk of ICIs. Four distinct classes of splicing characteristics considered were associated with splicing factors, neoantigens, splicing isoforms, and splicing levels. Correlation analysis confirmed that expression levels of splicing factors were predictive of irAE risk. Adding DHX16 expression to the bivariate PD-L1 protein expression-fPD1 model markedly enhanced the prediction for irAE. Furthermore, we identified 668 and 1,131 potential predictors based on the correlation of the incidence of irAEs with splicing frequency and isoform expression, respectively. The functional analysis revealed that alternative splicing might contribute to irAE pathogenesis via coordinating innate and adaptive immunity. Remarkably, autoimmune-related genes and autoantigens were preferentially over-represented in these predictors for irAE, suggesting a close link between autoimmunity and irAE occurrence. In addition, we established a trivariate model composed of CDC42EP3-206, TMEM138-211, and IRX3-202, that could better predict the risk of irAE across various cancer types, indicating a potential application as promising biomarkers for irAE. Our study not only highlights the clinical relevance of alternative splicing for irAE development during checkpoint immunotherapy but also sheds new light on the mechanisms underlying irAEs.


2020 ◽  
Vol 10 (2) ◽  
Author(s):  
Tao Jiang ◽  
Qingzhu Jia ◽  
Wenfeng Fang ◽  
Shengxiang Ren ◽  
Xiaoxia Chen ◽  
...  

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 2600-2600
Author(s):  
Chunling Liu ◽  
Qianqian Duan ◽  
Qin Zhang

2600 Background: The KMT2 (lysine methyltransferase) family of histone modifying proteins play important roles in regulating developmental pathways, and mutations in the genes encoding these proteins have been strongly linked to many solid tumor cancers. Recently, there is emerging evidence that KMT2 family genes are involved in sensitivity to immune checkpoint inhibitors (ICIs) by modulating the immune environment. Here we explored the relationship between KMT2C mutation and its efficacy of immunotherapy. Methods: 1661 patients with next-generation sequencing (NGS) and immunotherapy data obtained from MSKCC clinical cohort were used to explore the association with KMT2C mutation and TMB and efficacy of ICIs. TMB was defined as the total number of somatic nonsynonymous mutations in the coding region. NGS data of 6624 pan-cancer patients who also detected MSI and PD-L1 expression from the Chinese clinical dataset were also analyzed relevance of mutation and these immune-related indicators. Results: In total, 9.81% (163/1661) patients in MSKCC cohort harbored KMT2C mutation. In the Chinese cohort, the KMT2C mutation ratio (11.19%, 741/6624) was similar to MSKCC. The TMB level of KMT2C mutation group in both MSKCC cohort and Chinese pan-cancer patient cohort was significantly higher than wild-type group (P < 0.001). A multivariable analysis across the pan-cancer cohort using Cox proportional-hazards regression demonstrated that KMT2C mutation was significantly associated with better OS (hazard ratio, 0.69; 95%CI, 0.52-0.90; P = 0.006), and association remained significant with bladder (P = 0.039), colorectal (P = 0.024), melanoma (P < 0.001) and renal (P < 0.001), adjusting for cancer age, sex, metastases or primary. In addition, in Chinese cohort, KMT2C mutation was associated with higher PD-L1 positive expression (≥1%) (P = 0.01203) and MSI-H (P < 0.001). Conclusions: KMT2C mutation shows impressive association with efficacy of ICIs. Meanwhile, KMT2C-mutant group has a higher TMB, PD-L1 expression and MSI-H. These results indicated that KMT2C mutation may serve as a good potential biomarker of ICI benefit in patients with multiple cancer types.


2020 ◽  
Author(s):  
Shoujian Ji ◽  
Huan Chen ◽  
Keyan Yang ◽  
Guanxiong Zhang ◽  
Beibei Mao ◽  
...  

Abstract Background:Currently, only a small subset of cancer patients can benefit from anti-PD-1/PD-L1 monotherapy, indicating that further predictive biomarkers are needed. Methods:In the retrospective study, plasma samples were collected before anti-PD-L1/PD-L1 treatment in two subset of patients. A total of 59 immunological factors, including cytokines, chemokines, and soluble immune checkpoints, were measured by using a multiplex immunoassay kit. Moreover, multiplex immunohistochemistry (mIHC) was performed in a subgroup of patients.Results:In the discovery cohort, multiplex immunoassay profiling data revealed that both soluble PD-L1 and C-C motif chemokine 5 (CCL5/RANTES) showed rising trends across the three subgroups PD, SD and CR/PR. Further investigation demonstrated the predictive and prognostic value of the pre-treatment levels of PD-L1, CCL5/RANTES, and their combinatorial signature the “2-cytokine signature”. As expected, the signature-high patients displayed a remarkably increased disease control rate (DCR) and prolonged survival versus that of the lower subgroup. More importantly, the relevance between the three signatures and the efficiency of immunotherapy was confirmed in the pan-cancer validation cohort. Notably, the significant association between the “2-cytokine signature” and longer survival was validated. Further quantitative analyses of the tumor microenvironment composition suggested a link between the “2-cytokine signature” and NK cell infiltration.Conclusions:A combined peripheral signature comprising CCL5/RANTES and soluble PD-L1 appears to be an effective biomarker to predict benefit from anti-PD-1/PD-L1 monotherapy. Our study underscores that peripheral immunological features may play an essential role in guiding patient selection and are worthy of future prospective investigations.


2020 ◽  
Vol 27 (17) ◽  
pp. 2792-2813
Author(s):  
Martina Strudel ◽  
Lucia Festino ◽  
Vito Vanella ◽  
Massimiliano Beretta ◽  
Francesco M. Marincola ◽  
...  

Background: A better understanding of prognostic factors and biomarkers that predict response to treatment is required in order to further improve survival rates in patients with melanoma. Predictive Biomarkers: The most important histopathological factors prognostic of worse outcomes in melanoma are sentinel lymph node involvement, increased tumor thickness, ulceration and higher mitotic rate. Poorer survival may also be related to several clinical factors, including male gender, older age, axial location of the melanoma, elevated serum levels of lactate dehydrogenase and S100B. Predictive Biomarkers: Several biomarkers have been investigated as being predictive of response to melanoma therapies. For anti-Programmed Death-1(PD-1)/Programmed Death-Ligand 1 (PD-L1) checkpoint inhibitors, PD-L1 tumor expression was initially proposed to have a predictive role in response to anti-PD-1/PD-L1 treatment. However, patients without PD-L1 expression also have a survival benefit with anti-PD-1/PD-L1 therapy, meaning it cannot be used alone to select patients for treatment, in order to affirm that it could be considered a correlative, but not a predictive marker. A range of other factors have shown an association with treatment outcomes and offer potential as predictive biomarkers for immunotherapy, including immune infiltration, chemokine signatures, and tumor mutational load. However, none of these have been clinically validated as a factor for patient selection. For combined targeted therapy (BRAF and MEK inhibition), lactate dehydrogenase level and tumor burden seem to have a role in patient outcomes. Conclusions: With increasing knowledge, the understanding of melanoma stage-specific prognostic features should further improve. Moreover, ongoing trials should provide increasing evidence on the best use of biomarkers to help select the most appropriate patients for tailored treatment with immunotherapies and targeted therapies.


2020 ◽  
Author(s):  
Guanghui Xu ◽  
Yuhao Wang ◽  
Hushan Zhang ◽  
Xueke She ◽  
Jianjun Yang

Neuroendocrine neoplasias (NENs) are a heterogeneous group of rare tumors scattered throughout the body. Surgery, locoregional or ablative therapies as well as maintenance treatments are applied in well-differentiated, low-grade NENs, whereas cytotoxic chemotherapy is usually applied in high-grade neuroendocrine carcinomas. However, treatment options for patients with advanced or metastatic NENs are limited. Immunotherapy has provided new treatment approaches for many cancer types, including neuroendocrine tumors, but predictive biomarkers of immune checkpoint inhibitors (ICIs) in the treatment of NENs have not been fully reported. By reviewing the literature and international congress abstracts, we summarize the current knowledge of ICIs, potential predicative biomarkers in the treatment of NENs, implications and efficacy of ICIs as well as biomarkers for NENs of gastroenteropancreatic system, lung NENs and Merkel cell carcinoma in clinical practice.


2021 ◽  
Vol 9 (6) ◽  
pp. e002558
Author(s):  
Richard S.P. Huang ◽  
Brennan Decker ◽  
Karthikeyan Murugesan ◽  
Matthew Hiemenz ◽  
Douglas A. Mata ◽  
...  

BackgroundThe effects of non-amplification short variant (SV) mutations in CD274 (programmed death-ligand 1 (PD-L1)) on PD-L1 protein expression and immune checkpoint inhibitors (ICPIs) therapy are unknown. Here, we present a retrospective analysis of CD274 mutations detected by comprehensive genomic profiling (CGP) and correlate these results with tumor-cell PD-L1 immunohistochemistry (IHC)-based expression assessment to better understand the relationship between mutations and protein expression of PD-L1.MethodsCGP was performed on hybridization-captured, adaptor ligation-based libraries using DNA and/or RNA extracted from 314,631 tumor samples that were sequenced for up to 406 cancer-related genes and select gene rearrangements. PD-L1 IHC was performed on a subset of cases (n=58,341) using the DAKO 22C3 PD-L1 IHC assay and scored with the tumor proportion score (TPS).ResultsOverall, the prevalence of CD274 SV mutations was low (0.3%, 1081/314,631) with 577 unique variants. The most common CD274 SV mutations were R260H (n=51), R260C (n=18), R125Q (n=12), C272fs*13 (n=11), R86W (n=10), and R113H (n=10). The prevalence of CD274 mutations varied depending on tumor type with diffuse large B-cell lymphoma (1.9%, 19/997), cutaneous squamous cell carcinoma (1.6%, 14/868), endometrial adenocarcinoma (1.0%, 36/3740), unknown primary melanoma (0.9%, 33/3679), and cutaneous melanoma (0.8%, 32/3874) having the highest frequency of mutations. Of the R260H cases concurrently tested with PD-L1 IHC, most (81.8%, 9/11) had no PD-L1 expression, which contrasts to the five E237K cases where most (80%, 4/5) had PD-L1 expression. In addition, we saw a significantly lower level of PD-L1 expression in samples with a clonal truncating variant (nonsense or frameshift indel) when compared with samples with a subclonal truncating variants (mean: TPS=1 vs TPS=38; p<0.001), and also in clonal versus subclonal missense mutations (mean: TPS=11 vs TPS=22, respectively; p=0.049)ConclusionsWe defined the landscape of CD274 mutations in a large cohort of tumor types that can be used as a reference for examining CD274 mutations as potential resistance biomarkers for ICPI. Furthermore, we presented novel data on the correlation of CD274 mutations and PD-L1 protein expression, providing important new information on the potential functionality of these mutations and can serve as a basis for future research.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Sarabjot Pabla ◽  
R. J. Seager ◽  
Erik Van Roey ◽  
Shuang Gao ◽  
Carrie Hoefer ◽  
...  

Abstract Background Contemporary to the rapidly evolving landscape of cancer immunotherapy is the equally changing understanding of immune tumor microenvironments (TMEs) which is crucial to the success of these therapies. Their reliance on a robust host immune response necessitates clinical grade measurements of immune TMEs at diagnosis. In this study, we describe a stable tumor immunogenic profile describing immune TMEs in multiple tumor types with ability to predict clinical benefit from immune checkpoint inhibitors (ICIs). Methods A tumor immunogenic signature (TIGS) was derived from targeted RNA-sequencing (RNA-seq) and gene expression analysis of 1323 clinical solid tumor cases spanning 35 histologies using unsupervised analysis. TIGS correlation with ICI response and survival was assessed in a retrospective cohort of NSCLC, melanoma and RCC tumor blocks, alone and combined with TMB, PD-L1 IHC and cell proliferation biomarkers. Results Unsupervised clustering of RNA-seq profiles uncovered a 161 gene signature where T cell and B cell activation, IFNg, chemokine, cytokine and interleukin pathways are over-represented. Mean expression of these genes produced three distinct TIGS score categories: strong (n = 384/1323; 29.02%), moderate (n = 354/1323; 26.76%), and weak (n = 585/1323; 44.22%). Strong TIGS tumors presented an improved ICI response rate of 37% (30/81); with highest response rate advantage occurring in NSCLC (ORR = 36.6%; 16/44; p = 0.051). Similarly, overall survival for strong TIGS tumors trended upward (median = 25 months; p = 0.19). Integrating the TIGS score categories with neoplastic influence quantified via cell proliferation showed highly proliferative and strong TIGS tumors correlate with significantly higher ICI ORR than poorly proliferative and weak TIGS tumors [14.28%; p = 0.0006]. Importantly, we noted that strong TIGS and highly [median = not achieved; p = 0.025] or moderately [median = 16.2 months; p = 0.025] proliferative tumors had significantly better survival compared to weak TIGS, highly proliferative tumors [median = 7.03 months]. Importantly, TIGS discriminates subpopulations of potential ICI responders that were considered negative for response by TMB and PD-L1. Conclusions TIGS is a comprehensive and informative measurement of immune TME that effectively characterizes host immune response to ICIs in multiple tumors. The results indicate that when combined with PD-L1, TMB and cell proliferation, TIGS provides greater context of both immune and neoplastic influences on the TME for implementation into clinical practice.


2021 ◽  
pp. 107815522110055
Author(s):  
Clement Chung

Although therapeutically actionable molecular alterations are widely distributed across many cancer types, only a handful of them show evidence of clinical utility and are recommended for routine clinical practice in the management of cancers of colon and rectum (CRC). This 2021 update aims to provide a succinct summary on the use of prognostic and/or predictive biomarkers (expanded RAS, BRAF, microsatellite-high [MSI-H] or deficient mismatch repair [dMMR], neurotrophic tyrosine receptor kinase [ NTRK] fusion genes, and human epidermal growth factor receptor type II [ HER2] gene amplification) associated with CRC. Therapeutic implications of each relevant predictive or prognostic biomarker for patients with CRC are described, along with discussion on new developments on (1) biomarker-driven therapies such as testing of BRAF, MLH1 promoter methylation and MMR germline genes in differentiating sporadic CRC or hereditary conditions such as Lynch syndrome; (2) first-line use of immune checkpoint inhibitors in metastatic CRC; (3) risk stratification and therapy selection based on primary tumor location (left-sided vs. right-sided colon cancer); (3) atypical BRAF mutations; (4) use of EGFR directed therapy in the perioperative oligometastatic disease setting; (5) re-challenge of EGFR directed therapy and (6) personalizing therapy of fluoropyrimidine and irinotecan based on new evidence in pharmacogenomic testing. Data are collected and analyzed from available systematic reviews and meta-analyses of treatments with known therapeutic targets in CRC, which may be associated with predictive and/or prognostic biomarkers. Discussions are presented in an application-based format, with goal to empower pharmacists or other clinicians to gain awareness and understanding in biomarker-driven cancer therapy issues.


Sign in / Sign up

Export Citation Format

Share Document