scholarly journals 10 Tertiary lymphoid structure in pancreatic ductal adenocarcinoma; a potential target in an immunologically inert malignancy

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A10-A10
Author(s):  
Kasimu Adoke ◽  
Sanusi Haruna

BackgroundTertiary lymphoid structure (TLS) are immune aggregates with various degrees of organization that forms outside of secondary lymphoid organ in response to chronic inflammation, infection or tumours.1 2 TLS like secondary lymphoid organ, has defined T cell zones, B cell zones, high endothelial venules (HEV) and matured dendritic cells. They have been shown to correlate with increase patient survival in many tumours. Pancreatic ductal carcinoma (PDAC) is generally believed to be immunologically inert, low tumour mutation burden (TMB) and poor response to checkpoint blockade. Recent findings in some patients with PDAC shows significant intratumoral cytotoxic T cell infiltration and a high Inflammatory signature. Since current immunotherapy aim to enhance CD 8+ T cells, we aim to investigate the contribution of humoral immunity in patients with TLS in PDAC.MethodsTissue blocks were obtained from departmental archive and sections were cut and stained with routine H&E of all patients who underwent surgery for pancreatic cancer from 2015–2021 at Federal Medical Centre Birnin Kebbi. Serial sections were done at 5µ and four immunohistochemical stains CD 3, CD8, CD20 and PD-L1 were used. Statistical analysis was done using spss version 24.ResultsA total of nine cases of PDAC were diagnosed during the period with a Male Female ratio of 1:1.25 with an age range of 40–68 years and a mean age of 57.7±8.4. Five cases (55.6%) of PDAC showed TLS with marked expression of CD20 B+ cells seen in all five cases (figures 1 and 2). Also expressed are CD 8+ cytotoxic T cells and PD-L1. Prognosis was better in patients with TLS compare with those without TLS.Abstract 10 Figure 1TLS in pancreatic ductal adenocarcinoma.Abstract 10 Figure 2CD 20 stain in TLSConclusionsTLS can be a potential therapeutic target to explore in the future for treatment of some cancers including PDAC through induction of TLS formation in inert tumours or B lymphocyte specific target.ReferencesPitzalis C, Jones GW, Bombardieri M, Jones S. Ectopic lymphoid like structures in infection, cancer and autoimmunity. Nat Rev Immunol 2014; 14: 447–462.Neyt K, Perros F, Geurtsvan C, Hammad H. Lambrecht B. Tertiary lymphoid organs in infection and autoimmunity. Trends Immunol 2012; 33: 297–305.Ethics ApprovalEthical Approval was obtained for this study with Ethics number KSHREC Registration Number:104:6/2019ConsentN/A

1999 ◽  
Vol 189 (3) ◽  
pp. 451-460 ◽  
Author(s):  
Michael D. Gunn ◽  
Shigeru Kyuwa ◽  
Carmen Tam ◽  
Terutaka Kakiuchi ◽  
Akio Matsuzawa ◽  
...  

Secondary lymphoid organ chemokine (SLC) is expressed in high endothelial venules and in T cell zones of spleen and lymph nodes (LNs) and strongly attracts naive T cells. In mice homozygous for the paucity of lymph node T cell (plt) mutation, naive T cells fail to home to LNs or the lymphoid regions of spleen. Here we demonstrate that expression of SLC is undetectable in plt mice. In addition to the defect in T cell homing, we demonstrate that dendritic cells (DCs) fail to accumulate in spleen and LN T cell zones of plt mice. DC migration to LNs after contact sensitization is also substantially reduced. The physiologic significance of these abnormalities in plt mice is indicated by a markedly increased sensitivity to infection with murine hepatitis virus. The plt mutation maps to the SLC locus; however, the sequence of SLC introns and exons in plt mice is normal. These findings suggest that the abnormalities in plt mice are due to a genetic defect in the expression of SLC and that SLC mediates the entry of naive T cells and antigen-stimulated DCs into the T cell zones of secondary lymphoid organs.


2019 ◽  
Author(s):  
Zhikai Wang ◽  
Ran Yan ◽  
Jiayun Li ◽  
Ya Gao ◽  
Philip Moresco ◽  
...  

AbstractHow pancreatic ductal adenocarcinoma (PDA) cells stimulate CXCR4 to exclude T cells and resist T cell checkpoint inhibitors is not known. Here, we find that CXCL12, the ligand for CXCR4 that is produced by the cancer-associated fibroblast, “coats” human PDA and colorectal cancer cells as covalent heterodimers with keratin 19 (KRT19). Modeling the formation of the heterodimer with three proteins shows that KRT19 binds CXCL12 and transglutaminase-2 (TGM2), and that TGM2 converts the reversible KRT19-CXCL12 complex into a covalent heterodimer. We validate this model by showing that cancer cells in mouse PDA tumors must express KRT19 and TGM2 to become coated with CXCL12, exclude T cells, and resist immunotherapy with anti-PD-1 antibody. Thus, PDA cells have a cell-autonomous means by which they capture CXCL12 to mediate immune suppression, which is potentially amenable to therapy.One Sentence SummaryCancer cells in pancreatic ductal adenocarcinoma use transglutaminase-2 to assemble a coating comprised of covalent CXCL12-keratin 19 heterodimers that excludes T cells and mediates resistance to inhibition of the PD-1 T cell checkpoint.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A687-A687
Author(s):  
Meagan Rollins ◽  
Jackson Raynor ◽  
Ebony Miller ◽  
Ellen Spartz ◽  
Walker Lahr ◽  
...  

BackgroundPancreatic ductal adenocarcinoma (PDA) is a lethal malignancy characterized by a highly suppressive tumor microenvironment. Despite this, engineered T cell therapy has promise for effectively targeting PDA. To identify the underlying mechanisms of antigen-specific engineered T cell immunosuppression in PDA, we create novel TCR knock-in mouse models for a robust and standardized source of naïve mesothelin (Msln)-specific T cells.MethodsSpecifically, we integrate two murine mesothelin-specific TCRs into the physiologic Trac locus in primary murine T cells and zygotes using CRISPR/Cas9 and rAAV expressing the TCR DNA. Simultaneously using CRISPR/Cas9, Msln was disrupted to circumvent T cell tolerance.ResultsThis strategy resulted in the rapid generation of homozygous TCR Trac knock-in mice and with homozygous null mutations in Msln. In these TCR-exchanged (TRex) mice, most T cells expressed the 1045 (high affinity) or 7431 (low affinity) as determined by tetramer staining. TRex T cells exhibit a naïve phenotype and rapidly differentiate into effector T cells upon antigenic stimulation. While the high affinity 1045 TCR elicits function in CD4 T cells, the lower affinity 7431 T cells exhibit a higher functional avidity and less TCR downregulation when antigen is limiting. Historical TCR transgenic T cells, in which the TCR is randomly integrated into the genome, exhibit increased PD1, CD25, and CD69, decreased functionality, and a bias to CD25-Foxp3+ Treg as compared to T cells from TRex mice. Further, TCR Trac integration in primary T cells retain superior function following repetitive antigenic stimulations retrovirally transduced T cells. Adoptive transfer of 1045 TRex T cells significantly prolongs survival of mice bearing autochthonous PDA. When combined with a vaccine, 1045 TRex T cells cause involution of the fibroinflammatory tumor stroma.ConclusionsIn sum, we rapidly generate mice that physiologically express the desired TCR, circumventing the shortcomings of standard T cell engineering strategies and TCR transgenic models.Ethics ApprovalUniversity of Minnesota Institutional Animal Care and Use Committee approved all animal studies to Dr. Ingunn Stromnes (2005-38115A.) Generation of TCR knockin (KI) animals was performed in the Mouse Genetic Laboratory at the University of Minnesota.


2021 ◽  
Vol 9 (11) ◽  
pp. e002837
Author(s):  
Allison A Fitzgerald ◽  
Shangzi Wang ◽  
Veena Agarwal ◽  
Emily F Marcisak ◽  
Annie Zuo ◽  
...  

BackgroundPancreatic ductal adenocarcinoma (PDAC) is projected to be the second leading cause of cancer death in the USA by 2030. Immune checkpoint inhibitors fail to control most PDAC tumors because of PDAC’s extensive immunosuppressive microenvironment and poor immune infiltration, a phenotype also seen in other non-inflamed (ie, ‘cold’) tumors. Identifying novel ways to enhance immunotherapy efficacy in PDAC is critical. Dipeptidyl peptidase (DPP) inhibition can enhance immunotherapy efficacy in other cancer types; however, the impact of DPP inhibition on PDAC tumors remains unexplored.MethodsWe examined the effects of an oral small molecule DPP inhibitor (BXCL701) on PDAC tumor growth using mT3-2D and Pan02 subcutaneous syngeneic murine models in C57BL/6 mice. We explored the effects of DPP inhibition on the tumor immune landscape using RNAseq, immunohistochemistry, cytokine evaluation and flow cytometry. We then tested if BXCL701 enhanced anti-programmed cell death protein 1 (anti-PD1) efficacy and performed immune cell depletion and rechallenged studies to explore the relevance of cytotoxic immune cells to combination treatment efficacy.ResultsIn both murine models of PDAC, DPP inhibition enhanced NK and T cell immune infiltration and reduced tumor growth. DPP inhibition also enhanced the efficacy of anti-PD1. The efficacy of dual anti-PD1 and BXCL701 therapy was dependent on both CD8+ T cells and NK cells. Mice treated with this combination therapy developed antitumor immune memory that cleared some tumors after re-exposure. Lastly, we used The Cancer Genome Atlas (TCGA) to demonstrate that increased NK cell content, but not T cell content, in human PDAC tumors is correlated with longer overall survival. We propose that broad DPP inhibition enhances antitumor immune response via two mechanisms: (1) DPP4 inhibition increases tumor content of CXCL9/10, which recruits CXCR3+ NK and T cells, and (2) DPP8/9 inhibition activates the inflammasome, resulting in proinflammatory cytokine release and Th1 response, further enhancing the CXCL9/10-CXCR3 axis.ConclusionsThese findings show that DPP inhibition with BXCL701 represents a pharmacologic strategy to increase the tumor microenvironment immune cell content to improve anti-PD1 efficacy in PDAC, suggesting BXCL701 can enhance immunotherapy efficacy in ‘cold’ tumor types. These findings also highlight the potential importance of NK cells along with T cells in regulating PDAC tumor growth.


2020 ◽  
Author(s):  
Shivan Sivakumar ◽  
Enas Abu-Shah ◽  
David J Ahern ◽  
Edward H Arbe-Barnes ◽  
Nagina Mangal ◽  
...  

AbstractObjectivePancreatic cancer has the worst prognosis of any human malignancy and leukocyte infiltration is a major prognostic marker of the disease. As current immunotherapies confer negligible survival benefits, there is a need to better characterise leukocytes in pancreatic cancer to identify better therapeutic strategies.DesignIn this study, a multi-parameter mass-cytometry analysis was performed on 32,000 T-cells from eight human pancreatic cancer patients. Single-cell RNA sequencing dataset analysis was performed on a cohort of 24 patients. Multiplex immunohistochemistry imaging and spatial analysis were performed to map immune infiltration into the tumour microenvironment.ResultsRegulatory T-cell populations demonstrated highly immunosuppressive states with high TIGIT, ICOS and CD39 expression. CD8+ T-cells were found to be either in senescence or an exhausted state. The exhausted CD8 T-cells had low PD-1 expression but high TIGIT and CD39 expression. These findings were corroborated in an independent pancreatic cancer single-cell RNA dataset from 24 patients.ConclusionsThese data suggest that T-cells are major players in the suppressive microenvironment of pancreatic cancer. Our work identifies novel therapeutic targets that should form the basis for rational design of a new generation of clinical trials in pancreatic ductal adenocarcinoma.Statement of SignificanceThis study elucidates the T-cell phenotypes in pancreatic ductal adenocarcinoma (PDAC). T-cells potentiate immune-suppression through an activated regulatory T-cell population expressing high TIGIT, ICOS and CD39. CD8+ T-cells were primarily senescent or TIGIT+ exhausted, but with minimal PD-1 expression. These findings propose new immunotherapy targets for PDAC.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1070 ◽  
Author(s):  
Yazdanifar ◽  
Zhou ◽  
Grover ◽  
Williams ◽  
Bose ◽  
...  

Chimeric antigen receptor (CAR) T cells have shown remarkable success in treating hematologic cancers. However, this efficacy has yet to translate to treatment in solid tumors. Pancreatic ductal adenocarcinoma (PDA) is a fatal malignancy with poor prognosis and limited treatment options. We have developed a second generation CAR T cell using the variable fragments of a novel monoclonal antibody, TAB004, which specifically binds the tumor-associated-MUC1 (tMUC1). tMUC1 is overexpressed on ~85% of all human PDA. We present data showing that TAB004-derived CAR T cells specifically bind to tMUC1 on PDA cells and show robust killing activity; however, they do not bind or kill normal epithelial cells. We further demonstrated that the tMUC1-CAR T cells control the growth of orthotopic pancreatic tumors in vivo. We witnessed that some PDA cells (HPAFII and CFPAC) were refractory to CAR T cell treatment. qPCR analysis of several genes revealed overexpression of indoleamine 2, 3-dioxygenases-1 (IDO1), cyclooxygenase 1 and 2 (COX1/2), and galectin-9 (Gal-9) in resistant PDA cells. We showed that combination of CAR T cells and biological inhibitors of IDO1, COX1/2, and Gal-9 resulted in significant enhancement of CAR T cell cytotoxicity against PDA cells. Overcoming PDA resistance is a significant advancement in the field.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A921-A921
Author(s):  
Thierry Guillaudeux ◽  
Yulia Ovechkina ◽  
Shaarwari Sridhar ◽  
David Jurchen ◽  
David Peckham ◽  
...  

BackgroundCD27 is a member of the TNF receptor superfamily and plays a critical role in T-cell activation by providing a costimulatory signal. CD27 signaling enhances T-cell proliferation, activation and differentiation of effector and memory T cells and therefore promotes cytotoxic T cell (CTL)-based anti-tumor immunity.1 Agonistic stimulation of CD27 is a promising cancer immunotherapy approach to boost specific T cell driven anti-tumor responses.MethodsIn this study, we generated a series of 147 fully human monoclonal anti-CD27 antibodies and tested their agonist properties to stimulate T cell activation.ResultsUsing a NF-κB reporter Jurkat cell line, we evaluated in vitro the ability of anti-CD27 antibodies to induce CD27 receptor activation. With this assay, five antibodies have been selected for their agonist properties. When combined with suboptimal T cell receptor (TCR) stimulation, agonist antibodies induced CD27 receptor activation with an EC50 of 1–5 ug/mL. We also used human peripheral blood T cells to characterize the CD27-mediated costimulatory effects of agonist antibodies in combination with TCR stimulation. Our anti-CD27 monoclonal antibodies boosted T cell proliferation and induced IL-2 and TNFalpha secretion only in a presence of TCR engagement. Moreover, CD27 agonists induce strong T cell proliferation in a Mixed Lymphocyte Reaction. CD27 antibodies were shown to bind human and cynomolgus monkey CD27 with a KD value of 5–20 nM as determined by BioLayer Interferometry, but do not bind to mouse CD27. In vivo experiments are currently ongoing to demonstrate the efficient anti-tumor activity of the selected CD27 agonist antibodies in different mice tumor models.ConclusionsIn conclusion, we have developed and successfully selected efficient fully human immuno-stimulatory agonist CD27 mAbs as a promising cancer immunotherapy.ReferenceHendriks J, Xiao Y, Borst J. CD27 promotes survival of activated T cells and complements CD28 in generation and establishment of the effector T cell pool. J Exp Med 2003;Volume 198, Number 9:1369–1380.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zoe C. Schmiechen ◽  
Ingunn M. Stromnes

Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy with an overall 5-year survival rate of 10%. Disease lethality is due to late diagnosis, early metastasis and resistance to therapy, including immunotherapy. PDA creates a robust fibroinflammatory tumor microenvironment that contributes to immunotherapy resistance. While previously considered an immune privileged site, evidence demonstrates that in some cases tumor antigen-specific T cells infiltrate and preferentially accumulate in PDA and are central to tumor cell clearance and long-term remission. Nonetheless, PDA can rapidly evade an adaptive immune response using a myriad of mechanisms. Mounting evidence indicates PDA interferes with T cell differentiation into potent cytolytic effector T cells via deficiencies in naive T cell priming, inducing T cell suppression or promoting T cell exhaustion. Mechanistic research indicates that immunotherapy combinations that change the suppressive tumor microenvironment while engaging antigen-specific T cells is required for treatment of advanced disease. This review focuses on recent advances in understanding mechanisms limiting T cell function and current strategies to overcome immunotherapy resistance in PDA.


Sign in / Sign up

Export Citation Format

Share Document