Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity

2010 ◽  
Vol 18 (NA) ◽  
pp. 309-319 ◽  
Author(s):  
Hui Chen ◽  
Jian-Guo Jiang

The salinization and water deficit of soil are widespread environmental problems in limiting plant survival, growth, and productivity. However, some plants could adopt some strategies to resist salinity and drought stresses. Among these strategies, the mechanism of osmotic adjustment could help plants and algae to avoid ion toxicity and maintain water uptake in both stresses by accumulating large quantities of osmolytes. Two types of osmolytes, organic solutes and inorganic ions, play a key role in osmotic adjustment. Different osmolytes and their osmotic adjustment actions are different according to their distribution in different plants. Organic solutes, known as compatible solutes, include amino acids, glycerol, sugars, and other low molecular weight metabolites, serve a function in cells to lower or balance the osmotic potential of intracellular and extracellular ions in resistance to osmotic stresses. Inorganic ions for osmotic adjustment are mainly Na+, K+, Ca2+, and Cl–. Inorganic ions make great contribution in osmotic adjustment by ion transport processes with related ion antiporters and ion channels. The aim of this review is to integrate recent data on the mechanisms of osmotic adjustment by osmolytes in plants and algae, and to illustrate the variety of related molecular mechanisms, to introduce new concepts and techniques into this research field. Genetic manipulation including the application of transgenic techniques in plants provides promising strategies to elevate the tolerance capability of plants under osmotic stress conditions.

2011 ◽  
Vol 2 (5) ◽  
pp. 407-419 ◽  
Author(s):  
Sergey Shabala ◽  
Lana Shabala

AbstractPlants and bacteria respond to hyperosmotic stress by an increase in intracellular osmolality, adjusting their cell turgor to altered growth conditions. This can be achieved either by increased uptake orde novosynthesis of a variety of organic osmolytes (so-called ‘compatible solutes’), or by controlling fluxes of ions across cellular membranes. The relative contributions of each of these mechanisms have been debated in literature for many years and remain unresolved. This paper summarises all the arguments and reopens a discussion on the efficiency and strategies of osmotic adjustment in plants and bacteria. We show that the bulk of osmotic adjustment in both plants and bacteria is achieved by increased accumulation of inorganic osmolytes such as K+, Na+and Cl-. This is applicable to both halophyte and glycophyte species. At the same time,de novosynthesis of compatible solutes is an energetically expensive and slow option and can be used only for the fine adjustment of the cell osmotic potential. The most likely role the organic osmolytes play in osmotic adjustment is in osmoprotection of key membrane transport proteins and reactive oxygen species (ROS) scavenging. The specific mechanisms by which compatible solutes regulate activity of ion transporters remain elusive and require more thorough investigation. It is concluded that creating transgenic species with increased levels of organic osmolytes by itself is counterproductive due to high yield penalties; all these attempts should be complemented by a concurrent increase in the accumulation of inorganic ions directly used for osmotic adjustment.


2020 ◽  
Vol 117 (26) ◽  
pp. 15293-15304 ◽  
Author(s):  
Antoine Abrieux ◽  
Yongbo Xue ◽  
Yao Cai ◽  
Kyle M. Lewald ◽  
Hoang Nhu Nguyen ◽  
...  

Organisms possess photoperiodic timing mechanisms to detect variations in day length and temperature as the seasons progress. The nature of the molecular mechanisms interpreting and signaling these environmental changes to elicit downstream neuroendocrine and physiological responses are just starting to emerge. Here, we demonstrate that, inDrosophila melanogaster, EYES ABSENT (EYA) acts as a seasonal sensor by interpreting photoperiodic and temperature changes to trigger appropriate physiological responses. We observed that tissue-specific genetic manipulation ofeyaexpression is sufficient to disrupt the ability of flies to sense seasonal cues, thereby altering the extent of female reproductive dormancy. Specifically, we observed that EYA proteins, which peak at night in short photoperiod and accumulate at higher levels in the cold, promote reproductive dormancy in femaleD. melanogaster. Furthermore, we provide evidence indicating that the role of EYA in photoperiodism and temperature sensing is aided by the stabilizing action of the light-sensitive circadian clock protein TIMELESS (TIM). We postulate that increased stability and level of TIM at night under short photoperiod together with the production of cold-induced and light-insensitive TIM isoforms facilitate EYA accumulation in winter conditions. This is supported by our observations thattimnull mutants exhibit reduced incidence of reproductive dormancy in simulated winter conditions, while flies overexpressingtimshow an increased incidence of reproductive dormancy even in long photoperiod.


2008 ◽  
Vol 28 (6) ◽  
pp. 577-584 ◽  
Author(s):  
Constanze Will ◽  
Michael Fromm ◽  
Dominik Müller

Claudins are essential components of the intercellular tight junction and major determinants of paracellular solute fluxes across epithelia and endothelia. Many members of this family display a distinct charge or size specificity, whereas others render the epithelium impermeable to transport. Due to intercellular localization, claudin-mediated transport processes are passive and driven by an electrochemical gradient. In epithelial tissues, claudins exhibit a temporal–spatial expression pattern corresponding with regional and local solute transport profiles. Whereas paracellular transport mechanisms in organs such as intestine and kidney have been extensively investigated, little is known about the molecular mechanisms determining solute transport in the peritoneum, and thus the determinants of peritoneal dialysis. Given the ubiquitous expression of claudins in endothelia and epithelia, it is predictable that claudins also contribute to pore formation and determination in the peritoneum, and that they are involved in solute flux. Therefore, we review the basic characteristics of claudin family members and their function as exemplified in renal tubular transport and give an outlook to what extent claudin family members might be of importance for solute reabsorption across the peritoneal membrane.


2021 ◽  
Vol 22 (3) ◽  
pp. 1331
Author(s):  
Daniela Sorriento ◽  
Guido Iaccarino

Fabry disease (FD) is a lysosomal storage disorder, depending on defects in alpha-galactosidase A (GAL) activity. At the clinical level, FD shows a high phenotype variability. Among them, cardiovascular dysfunction is often recurrent or, in some cases, is the sole symptom (cardiac variant) representing the leading cause of death in Fabry patients. The existing therapies, besides specific symptomatic treatments, are mainly based on the restoration of GAL activity. Indeed, mutations of the galactosidase alpha gene (GLA) cause a reduction or lack of GAL activity leading to globotriaosylceramide (Gb3) accumulation in several organs. However, several other mechanisms are involved in FD’s development and progression that could become useful targets for therapeutics. This review discusses FD’s cardiovascular phenotype and the last findings on molecular mechanisms that accelerate cardiac cell damage.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Baojin Yao ◽  
Bocheng Lu ◽  
Mei Zhang ◽  
Hongwei Gao ◽  
Xiangyang Leng ◽  
...  

Traditional Chinese medicine is one of the oldest medical systems in the world and has its unique principles and theories in the prevention and treatment of human diseases, which are achieved through the interactions of different types of materia medica in the form of Chinese medicinal formulations. GZZSZTW, a classical and effective Chinese medicinal formulation, was designed and created by professor Bailing Liu who is the only national medical master professor in the clinical research field of traditional Chinese medicine and skeletal diseases. GZZSZTW has been widely used in clinical settings for several decades for the treatment of joint diseases. However, the underlying molecular mechanisms are still largely unknown. In the present study, we performed quantitative proteomic analysis to investigate the effects of GZZSZTW on mouse primary chondrocytes using state-of-the-art iTRAQ technology. We demonstrated that the Chinese medicinal formulation GZZSZTW modulates chondrocyte structure, dynamics, and metabolism by controlling multiple functional proteins that are involved in the cellular processes of DNA replication and transcription, protein synthesis and degradation, cytoskeleton dynamics, and signal transduction. Thus, this study has expanded the current knowledge of the molecular mechanism of GZZSZTW treatment on chondrocytes. It has also shed new light on possible strategies to further prevent and treat cartilage-related diseases using traditional Chinese medicinal formulations.


mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
Travis J. Wiles ◽  
Elena S. Wall ◽  
Brandon H. Schlomann ◽  
Edouard A. Hay ◽  
Raghuveer Parthasarathy ◽  
...  

ABSTRACTCorrelating the presence of bacteria and the genes they carry with aspects of plant and animal biology is rapidly outpacing the functional characterization of naturally occurring symbioses. A major barrier to mechanistic studies is the lack of tools for the efficient genetic manipulation of wild and diverse bacterial isolates. To address the need for improved molecular tools, we used a collection of proteobacterial isolates native to the zebrafish intestinal microbiota as a testbed to construct a series of modernized vectors that expedite genetic knock-in and knockout procedures across lineages. The innovations that we introduce enhance the flexibility of conventional genetic techniques, making it easier to manipulate many different bacterial isolates with a single set of tools. We developed alternative strategies for domestication-free conjugation, designed plasmids with customizable features, and streamlined allelic exchange using visual markers of homologous recombination. We demonstrate the potential of these tools through a comparative study of bacterial behavior within the zebrafish intestine. Live imaging of fluorescently tagged isolates revealed a spectrum of distinct population structures that differ in their biogeography and dominant growth mode (i.e., planktonic versus aggregated). Most striking, we observed divergent genotype-phenotype relationships: several isolates that are predicted by genomic analysis andin vitroassays to be capable of flagellar motility do not display this trait within living hosts. Together, the tools generated in this work provide a new resource for the functional characterization of wild and diverse bacterial lineages that will help speed the research pipeline from sequencing-based correlations to mechanistic underpinnings.IMPORTANCEA great challenge in microbiota research is the immense diversity of symbiotic bacteria with the capacity to impact the lives of plants and animals. Moving beyond correlative DNA sequencing-based studies to define the cellular and molecular mechanisms by which symbiotic bacteria influence the biology of their hosts is stalling because genetic manipulation of new and uncharacterized bacterial isolates remains slow and difficult with current genetic tools. Moreover, developing tools de novo is an arduous and time-consuming task and thus represents a significant barrier to progress. To address this problem, we developed a suite of engineering vectors that streamline conventional genetic techniques by improving postconjugation counterselection, modularity, and allelic exchange. Our modernized tools and step-by-step protocols will empower researchers to investigate the inner workings of both established and newly emerging models of bacterial symbiosis.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Chenxu Ye ◽  
Humaira Rasheed ◽  
Yuehua Ran ◽  
Xiaojuan Yang ◽  
Lianxi Xing ◽  
...  

Abstract Background The reproductive plasticity of termite workers provides colonies with tremendous flexibility to respond to environmental changes, which is the basis for evolutionary and ecological success. Although it is known that all colony members share the same genetic background and that differences in castes are caused by differences in gene expression, the pattern of the specific expression of genes involved in the differentiation of workers into reproductives remains unclear. In this study, the isolated workers of Reticulitermes labralis developed into reproductives, and then comparative transcriptomes were used for the first time to reveal the molecular mechanisms underlying the reproductive plasticity of workers. Results We identified 38,070 differentially expressed genes and found a pattern of gene expression involved in the differentiation of the workers into reproductives. 12, 543 genes were specifically upregulated in the isolated workers. Twenty-five signal transduction pathways classified into environmental information processing were related to the differentiation of workers into reproductives. Ras functions as a signalling switch regulates the reproductive plasticity of workers. The catalase gene which is related to longevity was up-regulated in reproductives. Conclusion We demonstrate that workers leaving the natal colony can induce the expression of stage-specific genes in the workers, which leads to the differentiation of workers into reproductives and suggests that the signal transduction along the Ras-MAPK pathway crucially controls the reproductive plasticity of the workers. This study also provides an important model for revealing the molecular mechanism of longevity changes.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Sarina Koehler ◽  
Andrea Springer ◽  
Nicole Issel ◽  
Stefanie Klinger ◽  
Christina Strube ◽  
...  

Abstract Background The roundworm Ascaris suum is one of the parasites with the greatest economic impact on pig farming. In this context, lower weight gain is hypothesized to be due to decreased nutrient absorption. This study aims at characterizing the effects of A. suum infection on intestinal nutrient transport processes and potential molecular mechanisms. Methods Three groups of six piglets each were infected orally (10,000 embryonated A. suum eggs) in a single dose (“single infection”). Another three groups were infected orally (1000 embryonated eggs) for 10 consecutive days (“trickle infection”). Animals were necropsied 21, 35 and 49 days post-infection (dpi). Three groups served as respective controls. The Ussing chamber technique was applied for the functional characterization of small intestinal tissues [short-circuit currents (Isc) as induced by glucose, alanine and peptides; 3H-glucose net flux rates; tissue conductance (Gt)]. Transcription and expression levels of relevant cytokines and nutrient transporters were evaluated (qPCR/western blot). Results Peptide- and alanine-induced changes in Isc were significantly decreased in the jejunum and ileum of the trickle-infected group at 49 dpi and in the ileum of the single-infected group at 49 dpi. No significant differences regarding glucose transport were observed between the Ascaris-infected groups and the control group in Ussing chamber experiments. Transcription levels of the glucose and peptide transporters as well as of selected transcription factors (transcription of signal transducer and activator of transcription 6 [STAT6] and hypoxia-inducible factor 1-alpha [Hif-1α]) were significantly increased in response to both infection types after some periods. The transcription of interleukins 4 and 13 varied between decrease and increase regarding the respective time points, as did the protein expression of glucose transporters. The expression of the peptide transporter PepT1 was significantly decreased in the ileal single-infected group at 35 dpi. Hif-1α was significantly increased in the ileal tissue from the single-infected group at 21 dpi and in the trickle-infected group at 35 dpi. The expression levels of Na+/K+-ATPase and ASCT1 remained unaffected. Conclusions In contrast to the current hypothesis, these results indicate that the nutrient deprivation induced by A. suum cannot be explained by transcriptional or expression changes alone and requires further studies. Graphical abstract


Author(s):  
Naiara Angelo Gomes ◽  
José Cleidimário Araújo Leite ◽  
Camilo Allyson Simões de Farias ◽  
Ana Paula Oliveira Silva ◽  
Fernanda Carolina Monteiro Ismael

<p>A destinação ambientalmente inadequada de resíduos sólidos urbanos provoca diversos impactos negativos no meio ambiente, especialmente nos componentes ambientais: solo, água e ar atmosférico. Neste sentido, para que esses efeitos adversos sejam identificados, é necessário conhecer as características do ambiente na área em questão. Neste estudo, objetivou-se a elaboração de um diagnóstico ambiental qualitativo dos meios físico, biótico e antrópico da área do lixão da cidade de Pombal, Estado da Paraíba. A metodologia utilizada teve por base consultas a órgãos públicos, pesquisas bibliográficas, visitas de campo e fotodocumentação. De acordo com os resultados, verificou-se a ocorrência de várias alterações ambientais adversas significativas nos meios físico, biótico e antrópico, típicas da destinação ambientalmente inadequada de resíduos sólidos em “depósitos” a céu aberto, o que tem resultado em uma degradação ambiental local e acarretado danos sociais, sanitários e ecológicos para o município.</p><p align="center"><strong><em>Qualitative Environmental diagnosis in the “dumpsite” of city Pombal, Paraíba</em></strong></p><p><strong>Abstract</strong><strong>: </strong>Environmentally inadequate disposal of municipal solid waste causes many negative impacts on the environment, especially in the environmental components: soil, water and atmospheric air. Then, for these adverse effects were identified, it is necessary to know the characteristics of the environment in the area in question. This study aims to develop a qualitative environmental diagnosis of the physical, biotic and anthropic environment of the dumpsite of <em>Pombal</em> in state of <em>Paraíba</em>, Brazil. The methodology used in the study was based on consultations in government agencies, bibliographic research, field visits and photo documentation. According to the results, it were noted the occurrence of a number of significant adverse environmental changes in the physical, biotic and anthropic environment, typical of solid waste disposal in "deposits" at  openwork, which has resulted in a local environmental degradation and have caused social, health and ecological damage to the municipality.</p>


2021 ◽  
Author(s):  
Eftychios Frangedakis ◽  
Manuel Waller ◽  
Tomoaki Nishiyama ◽  
Hirokazu Tsukaya ◽  
Xia Xu ◽  
...  

We have developed a simple Agrobacterium-mediated method for the stable transformation of the hornwort Anthoceros agrestis, the fifth bryophyte species for which a genetic manipulation technique becomes available. High transformation efficiency was achieved by using thallus tissue grown under low-light conditions. We generated a total of 216 transgenic A. agrestis lines expressing the β-Glucuronidase (GUS), cyan, green, and yellow fluorescent proteins under the control of the CaMV 35S promoter and several endogenous promoters. Nuclear and plasma membrane localization with multiple color fluorescent proteins was also confirmed. The transformation technique described here should pave the way for detailed molecular and genetic studies of hornwort biology, providing much needed insight into the molecular mechanisms underlying symbiosis, carbon-concentrating mechanism, RNA editing, and land plant evolution in general.


Sign in / Sign up

Export Citation Format

Share Document