Oral supplementation with the rutin improves cardiovagal baroreflex sensitivity and vascular reactivity in hypertensive rats

2013 ◽  
Vol 38 (11) ◽  
pp. 1099-1106 ◽  
Author(s):  
Leônidas das Graças Mendes-Junior ◽  
Matheus Morais de Oliveira Monteiro ◽  
Alynne dos Santos Carvalho ◽  
Thyago Moreira de Queiroz ◽  
Valdir de Andrade Braga

The hypothesis that oral supplementation with the flavonoid rutin improves baroreflex sensitivity and vascular reactivity in hypertensive (2-kidney-1-clip (2K1C)) rats was tested. Sixty-four rats were divided in 4 groups: sham + saline; sham + rutin; 2K1C + saline, and 2K1C + rutin. Six weeks after 2K1C surgery, the animals were treated with saline or rutin (40 mg·kg−1·day−1) by gavage for 7 days. Baroreflex sensitivity test using phenylephrine (8 μg·kg−1, iv) and sodium nitroprusside (25 μg·kg−1, iv), vascular reactivity, and thiobarbituric acid reactive substances assay were performed. Baroreflex sensitivity in hypertensive rats was impaired and compared with sham (−2.77 ± 0.15 vs. –1.53 ± 0.27 beats·min−1·mm Hg−1; n = 8; p < 0.05). Oral supplementation with rutin restored baroreflex sensitivity in 2K1C rats (−2.40 ± 0.24 vs. –2.77 ± 0.15 beats·min−1·mm Hg−1; n = 8; p > 0.05). Besides, hypertensive rats have greater contraction to phenylephrine (129.49% ± 4.46% vs. 99.50% ± 11.36%; n = 8; p < 0.05), which was restored by rutin (99.10% ± 1.77% vs. 99.50% ± 11.36%; n = 8; p > 0.05). Furthermore, vasorelaxation to acetylcholine was diminished in hypertensive rats (96.42% ± 2.80% vs. 119.35% ± 5.60%; n = 8; p < 0.05), which was also restored by rutin (117.55% ± 6.94% vs. 119.35% ± 5.60%; n = 8; p > 0.05). Finally, oxidative stress was greater in hypertensive rats (1.54 ± 0.12 vs. 0.53 ± 0.12 nmol MDA·mL−1; n = 8; p < 0.05) and rutin supplementation significantly decreased oxidative stress in those animals (0.70 ± 0.13 vs. 1.54 ± 0.12 nmol MDA·mL−1; n = 8; p < 0.05). We concluded that oral supplementation with rutin restores impaired baroreflex sensitivity and vascular reactivity in hypertensive rats by decreasing oxidative stress.

2015 ◽  
Vol 40 (4) ◽  
pp. 393-400 ◽  
Author(s):  
Naiane F.B. Alves ◽  
Suênia K.P. Porpino ◽  
Matheus M.O. Monteiro ◽  
Enéas R.M. Gomes ◽  
Valdir A. Braga

The hypothesis that oral supplementation with virgin coconut oil (Cocos nucifera L.) and exercise training would improve impaired baroreflex sensitivity (BRS) and reduce oxidative stress in spontaneously hypertensive rats (SHR) was tested. Adult male SHR and Wistar Kyoto rats (WKY) were divided into 5 groups: WKY + saline (n = 8); SHR + saline (n = 8); SHR + coconut oil (2 mL·day−1, n = 8); SHR + trained (n = 8); and SHR + trained + coconut oil (n = 8). Mean arterial pressure (MAP) was recorded and BRS was tested using phenylephrine (8 μg/kg, intravenous) and sodium nitroprusside (25 μg·kg−1, intravenous). Oxidative stress was measured using dihydroethidium in heart and aorta. SHR + saline, SHR + coconut oil, and SHR + trained group showed higher MAP compared with WKY + saline (175 ± 6, 148 ± 6, 147 ± 7 vs. 113 ± 2 mm Hg; p < 0.05). SHR + coconut oil, SHR + trained group, and SHR + trained + coconut oil groups presented lower MAP compared with SHR + saline group (148 ± 6, 147 ± 7, 134 ± 8 vs. 175 ± 6 mm Hg; p < 0.05). Coconut oil combined with exercise training improved BRS in SHR compared with SHR + saline group (−2.47 ± 0.3 vs. −1.39 ± 0.09 beats·min−1·mm Hg−1; p < 0.05). SHR + saline group showed higher superoxide levels when compared with WKY + saline (774 ± 31 vs. 634 ± 19 arbitrary units (AU), respectively; p < 0.05). SHR + trained + coconut oil group presented reduced oxidative stress compared with SHR + saline in heart (622 ± 16 vs. 774 ± 31 AU, p < 0.05). In aorta, coconut oil reduced oxidative stress in SHR compared with SHR + saline group (454 ± 33 vs. 689 ± 29 AU, p < 0.05). Oral supplementation with coconut oil combined with exercise training improved impaired BRS and reduced oxidative stress in SHR.


2020 ◽  
Vol 16 (5) ◽  
pp. 743-748
Author(s):  
Ana R.S. de Oliveira ◽  
Kyria J.C. Cruz ◽  
Jennifer B.S. Morais ◽  
Juliana S. Severo ◽  
Jéssica B. Beserra ◽  
...  

Background: The role of minerals in preventing the generation of oxidative stress in obese individuals has been evaluated. Magnesium is an antioxidant nutrient and a cofactor of enzymes involved in the cell membrane stabilization, attenuating the effects of oxidative stress. Objective: To evaluate the association between magnesium and concentrations of thiobarbituric acid reactive substances (TBARS) in patients with obesity and eutrophic women. Methods: A cross-sectional study was conducted with 73 women, divided into two groups: case group (patients with obesity, n=27) and control group (eutrophic women, n=46). Measurements of body mass index and waist circumference were performed. Dietary magnesium intake was assessed by the three-day food record using the NutWin software. Urinary magnesium concentration was measured by atomic absorption spectrophotometry method. Plasma concentrations of thiobarbituric acid reactive substances (TBARS) were also determined. Results: Mean values of dietary magnesium intake were 161.59 ± 60.04 and 158.73 ± 31.96 for patients with obesity and control group, respectively, with no significant difference between the groups studied (p >0.05). The value of urinary excretion of magnesium was lower than the reference values in both groups, with no significant difference between the groups studied (p >0.05). The plasma concentration of thiobarbituric acid reactive substances was significantly higher in patients with obesity compared to the control group (p <0.001). There was no correlation between levels of magnesium biomarkers and the concentration of TBARS (p >0.05). Conclusion: Patients with obesity showed a reduced dietary magnesium intake which seems to induce hypomagnesuria as a compensatory mechanism. The marker of oxidative stress evaluated in this study was not influenced by magnesium.


2013 ◽  
Vol 8 (5) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
Nadezda I. Kulesh ◽  
Sergey A. Fedoreyev ◽  
Marina V. Veselova ◽  
Natalia P. Mischenko ◽  
Vladimir A. Denisenko ◽  
...  

Seven isoflavonoids, including a new glycoside, (6a R,11a R)-medicarpin-3- O-gentiobioside (6), were isolated from the roots of Maackia amurensis using repeated column chromatography on a Toyopearl HW-50F sorbent and identified by HPLC–PDA–MS, 1H NMR, 13C, 1H–1H COSY, HSQC NMR and HMBC NMR analyses as daidzin (1), genistein-7- O-gentiobioside (2), pseudobaptigenin-7- O-gentiobioside (3), formononetin-7- O-gentiobioside (4), (6a R,11a R)-maackiain-3- O-gentiobioside (5), and 5- O-methylgenistein-7- O-gentiobioside (7). In the model of oxidative stress induced by formalin injection, the isolated isoflavone and pterocarpan glucosides 1-7 were shown to reduce the formation of malondialdehyde (MDA) and other thiobarbituric acid reactive substances (TBARS), as well as glutathione peroxidase (GPO) activity in rats.


2009 ◽  
Vol 62 (11-12) ◽  
pp. 578-581
Author(s):  
Vesna Marjanovic ◽  
Vidosava Djordjevic ◽  
Goran Marjanovic

Introduction. The appearance and intensity of oxidative stress were analyzed in the course of mechanical ventilation and parameters that could point toward potential lung damage. Material and methods. In three time intervals on day 1, 3 and 7 of mechanical ventilation, parameters such as: triglycerides, cholesterol, lactate, serum lactic dehydrogenase, acid-base balance and lipid peroxidation products - thiobarbituric acid reactive substances, were followed in 30 patients with head injuries. Results. A decrease in the level of partial oxygen pressure (PaO2) (p<0.01) and PaO2/FiO2 index (p<0.05) in arterial blood was recorded on day 3 of mechanical ventilation. This was accompanied with an increase in alveolar-arterial difference (AaDO2) (p<0.05), thiobarbituric acid reactive substances (p<0.001) and lactic dehydrogenase (p<0.001) comparing to day 1 of mechanical ventilation. The patients with initial PaO2>120 mmHg, had significant increase of thiobarbituric acid reactive substances and AaDO2 (p<0.05) and fall of PaO2 (p<0.001) on day 3 of mechanical ventilation. Conclusion. Oxidative stress and lipid peroxide production are increased during third day of mechanical ventilation leading to disruption of oxygen diffusion through alveolar-capillary membrane and reduction of parameters of oxygenation.


1994 ◽  
Vol 76 (6) ◽  
pp. 2570-2577 ◽  
Author(s):  
C. K. Sen ◽  
T. Rankinen ◽  
S. Vaisanen ◽  
R. Rauramaa

The association between exercise intensity and related oxidative stress was investigated in nine men who exercised for 30 min at their aerobic (AeT) and anaerobic (AnaeT) thresholds. We also tested the effect of oral N-acetylcysteine (NAC) on exercise-associated rapid blood glutathione (GSH) oxidation in subjects performing two identical maximal bicycle ergometer exercise (Max) tests. Before the second test (Max with NAC supplementation [Max(NAC)]), the men took 200 x 4 mg/day of NAC tablets for 2 days and an additional 800 mg on the test morning. Blood samples were drawn before, immediately after, and 24 h after the tests. Total and oxidized GSH levels in blood were determined. Plasma thiobarbituric acid-reactive substances and net peroxyl radical scavenging capacity (PSC) were assayed. Exercise-associated damage in leukocyte DNA was estimated by fluorometric analysis of DNA unwinding. A single bout of exercise at Max, AeT, and AnaeT resulted in a significant increase in blood GSH oxidation but did not influence net PSC of plasma. Although an association between a single bout of exercise and leukocyte DNA damage was apparent, this study suggests that the parameter may not serve as a sensitive index to assess the role of exercise intensity in the extent of exercise-associated oxidative stress. Plasma thiobarbituric acid-reactive substances did not change after either Max or Max(NAC) tests. NAC supplementation resulted in an increase in preexercise PSC, indicating a higher net antioxidant capacity of the plasma, but did not affect blood GSH.(ABSTRACT TRUNCATED AT 250 WORDS)


2019 ◽  
Vol 11 (6) ◽  
pp. 401
Author(s):  
Patricia Wolkmer ◽  
Andressa M. G. Stumm ◽  
Luiz F. K. Borges ◽  
Eduarda P. T. Ferreira ◽  
Bruna Favaretto ◽  
...  

This experiment aims to evaluate the correlation between lipid peroxidation levels in serum and seminal plasma in equines. Also, it investigates the lipid peroxidation in extended semen samples and its effects and sperm motility during a 72 hr refrigeration period. Blood and semen were collected from fertile Crioulo stallions. Serum and seminal plasma lipid peroxidation levels were analyzed by thiobarbituric acid reactive substances (TBARS) immediately after semen collection. After addition of extender (hour = 0), diluted semen was refrigerated and stored at 5 &deg;C. Semen analyses, TBARS and catalase activity were performed in extended semen at 0, 24, 48, and 72 hours. We noted that levels of plasma lipid peroxidation can be used as an indicative of seminal oxidative stress. Also, lipid peroxidation does not increase substantially during semen storage. Lipid peroxidation and the antioxidant enzyme catalase do not seem to be the major cause of loss and motility and consequently reduction in fertility in stallion semen during storage for 72 h at 5 &deg;C.


2021 ◽  
pp. 096032712110532
Author(s):  
Manigandan Nagarajan ◽  
Boobalan Raja ◽  
Jeganathan Manivannan

Due to the prevalence of hypertension (one of the major risk factors of CVD) in the population, it is necessary to explore the adverse effects of daily tolerable and “safe” dose of bisphenol A (BPA) under hypertensive conditions. The current study exposed the Nω-nitro-l-arginine methyl ester (L-NAME, 40 mg/kg b.w/day) induced hypertensive Wistar rats to BPA (50 μg/kg b.w/day) by oral administration along with appropriate controls for 30 days period. The results illustrate that a ‘safe’ dose of BPA does not influence the systolic blood pressure (SBP) and levels of circulatory biomarkers of tissue damage. On the other hand, BPA exposure significantly ( p < 0.05) elevates the thiobarbituric acid reactive substances (TBARS) content in plasma and tissues (heart, aorta, liver and kidney) in hypertensive rats when compared with respective control (BPA alone exposed) rats. Similarly, a significant modulation of ROS generation in RBC, plasma nitric oxide (NO) level and angiotensin-converting enzyme (ACE) activity was observed only under hypertensive milieu. In conclusion, the observed adverse effects during ‘safe’ dose of BPA exposure are specific to the hypertensive condition. Therefore, a precise investigation to explore the effects of BPA exposure in vulnerable hypertensive populations is highly suggested.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Christonikos Leventelis ◽  
Nikolaos Goutzourelas ◽  
Aikaterini Kortsinidou ◽  
Ypatios Spanidis ◽  
Georgia Toulia ◽  
...  

Buprenorphine and methadone are two substances widely used in the substitution treatment of patients who are addicted to opioids. Although it is known that they partly act efficiently towards this direction, there is no evidence regarding their effects on the redox status of patients, a mechanism that could potentially improve their action. Therefore, the aim of the present investigation was to examine the impact of buprenorphine and methadone, which are administered as substitutes to heroin-dependent patients on specific redox biomarkers in the blood. From the results obtained, both the buprenorphine (n=21) and the methadone (n=21) groups exhibited oxidative stress and compromised antioxidant defence. This was evident by the decreased glutathione (GSH) concentration and catalase activity in erythrocytes and the increased concentrations of thiobarbituric acid reactive substances (TBARS) and protein carbonyls in the plasma, while there was no significant alteration of plasma total antioxidant capacity (TAC) compared to the healthy individuals (n=29). Furthermore, methadone revealed more severe oxidant action compared to buprenorphine. Based on relevant studies, the tested substitutes mitigate the detrimental effects of heroin on patient redox status; still it appears that they need to be boosted. Therefore, concomitant antioxidant administration could potentially enhance their beneficial action, and most probably, buprenorphine that did not induce oxidative stress in such a severe mode as methadone, on the regulation of blood redox status.


2006 ◽  
Vol 25 (2) ◽  
pp. 242-249 ◽  
Author(s):  
Freddy J. Troost ◽  
Robert-Jan M. Brummer ◽  
Guido R. M. M. Haenen ◽  
Aalt Bast ◽  
Rachel I. van Haaften ◽  
...  

Iron-induced oxidative stress in the small intestine may alter gene expression in the intestinal mucosa. The present study aimed to determine which genes are mediated by an iron-induced oxidative challenge in the human small intestine. Eight healthy volunteers [22 yr(SD2)] were tested on two separate occasions in a randomized crossover design. After duodenal tissue sampling by gastroduodenoscopy, a perfusion catheter was inserted orogastrically to perfuse a 40-cm segment of the proximal small intestine with saline and, subsequently, with either 80 or 400 mg of iron as ferrous gluconate. After the intestinal perfusion, a second duodenal tissue sample was obtained. Thiobarbituric acid-reactive substances, an indicator of lipid peroxidation, in intestinal fluid samples increased significantly and dose dependently at 30 min after the start of perfusion with 80 or 400 mg of iron, respectively ( P < 0.001). During the perfusion with 400 mg of iron, the increase in thiobarbituric acid-reactive substances was accompanied by a significant, momentary rise in trolox equivalent antioxidant capacity, an indicator of total antioxidant capacity ( P < 0.05). The expression of 89 gene reporters was significantly altered by both iron interventions. Functional mapping showed that both iron dosages mediated six distinct processes. Three of those processes involved G-protein receptor coupled pathways. The other processes were associated with cell cycle, complement activation, and calcium channels. Iron administration in the small intestine induced dose-dependent lipid peroxidation and a momentary antioxidant response in the lumen, mediated the expression of at least 89 individual gene reporters, and affected at least six biological processes.


Sign in / Sign up

Export Citation Format

Share Document