Glandular trichomes on the inflorescence of Chrysanthemum morifolium cv. Dramatic (Compositae). I. Development and morphology

1979 ◽  
Vol 57 (7) ◽  
pp. 705-713 ◽  
Author(s):  
Janet Vermeer ◽  
R. L. Peterson

Floral apices of Chrysanthemum morifolium cv. Dramatic form glandular trichomes on the receptacle in interfloret positions and on the corolla tube above the constriction subtended by the ovary. The glandular trichomes in both positions are initiated by the enlargement of single epidermal cells followed by a single anticlinal division and a series of periclinal divisions resulting in a 10-celled biseriate structure. Receptacular trichomes develop while florets are being initiated on the flanks of the floral apex and by the time petal primordia are initiated these trichomes are mature. Glandular trichomes on the corolla tube are initiated on peripheral florets while florets are still being initiated in a centripetal direction. Each glandular trichome has a cuticular covering beneath which secreted materials accumulate, thereby distending the cuticle. A large pore eventually forms in the cuticle and presumably allows the escape of secreted substances.


1979 ◽  
Vol 57 (7) ◽  
pp. 714-729 ◽  
Author(s):  
Janet Vermeer ◽  
R. L. Peterson

Glandular trichomes on the inflorescence of Chrysanthemum morifolium cv. Dramatic are initiated from a single epidermal cell outgrowth and develop through an anticlinal division and a series of periclinal divisions to form a biseriate multicellular structure. Cells of the young trichome contain a large nucleus with prominent nucleoli and few small cellular organelles. Prior to the secretory stage, numerous ribosomes, polyribosomes, and dictyosomes are present in a dense cytoplasm but most of the dictyosomes are lost as secretion commences. Plastids in the stalk cells senesce but in a different manner than those in the upper tiers of secretory cells. Lipoidal substances form in the degenerating plastids. Cell wall ingrowths and the deposition of a flocculent material in the primary cell wall characterize secretory hairs. In very old hairs cellular lysis takes place with mitochondria being the last cellular organelle to remain intact. The secreted material, which collects in a subcuticular space, appears to be a terpenoid. The function of this material is not known.



Euphytica ◽  
2021 ◽  
Vol 217 (3) ◽  
Author(s):  
Joris Santegoets ◽  
Marcella Bovio ◽  
Wendy van’t Westende ◽  
Roeland E. Voorrips ◽  
Ben Vosman

AbstractThe greenhouse whitefly Trialeurodes vaporariorum is a major threat in tomato cultivation. In greenhouse grown tomatoes non-trichome based whitefly resistance may be better suited than glandular trichome based resistance as glandular trichomes may interfere with biocontrol, which is widely used. Analysis of a collection of recombinant inbred lines derived from a cross between Solanum lycopersicum and Solanum galapagense showed resistance to the whitefly T. vaporariorum on plants without glandular trichomes type IV. The resistance affected whitefly adult survival (AS), but not oviposition rate. This indicates that S. galapagense, in addition to trichome based resistance, also carries non-trichome based resistance components. The effectiveness of the non-trichome based resistance appeared to depend on the season in which the plants were grown. The resistance also had a small but significant effect on the whitefly Bemisia tabaci, but not on the thrips Frankliniella occidentalis. A segregating F2 population was created to map the non-trichome based resistance. Two Quantitative trait loci (QTLs) for reduced AS of T. vaporariorum were mapped on chromosomes 12 and 7 (explaining 13.9% and 6.0% of the variance respectively). The QTL on chromosome 12 was validated in F3 lines.



Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 930
Author(s):  
Xu Yu ◽  
Xiwu Qi ◽  
Shumin Li ◽  
Hailing Fang ◽  
Yang Bai ◽  
...  

Light is a key environmental aspect that regulates secondary metabolic synthesis. The essential oil produced in mint (Mentha canadensis L.) leaves is used widely in the aromatics industry and in medicine. Under low-light treatment, significant reductions in peltate glandular trichome densities were observed. GC-MS analysis showed dramatically reduced essential oil and menthol contents. Light affected the peltate glandular trichomes’ development and essential oil yield production. However, the underlying mechanisms of this regulation were elusive. To identify the critical genes during light-regulated changes in oil content, following a 24 h darkness treatment and a 24 h recovery light treatment, leaves were collected for transcriptome analysis. A total of 95,579 unigenes were obtained, with an average length of 754 bp. About 56.58% of the unigenes were annotated using four public protein databases: 10,977 differentially expressed genes (DEGs) were found to be involved in the light signaling pathway and monoterpene synthesis pathway. Most of the TPs showed a similar expression pattern: downregulation after darkness treatment and upregulation after the return of light. In addition, the genes involved in the light signal transduction pathway were analyzed. A series of responsive transcription factors (TFs) were identified and could be used in metabolic engineering as an effective strategy for increasing essential oil yields.



Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1420
Author(s):  
Takahiro Ueda ◽  
Miki Murata ◽  
Ken Yokawa

Environmental light conditions influence the biosynthesis of monoterpenes in the mint plant. Cyclic terpenes, such as menthol, menthone, pulegone, and menthofuran, are major odor components synthesized in mint leaves. However, it is unclear how light for cultivation affects the contents of these compounds. Artificial lighting using light-emitting diodes (LEDs) for plant cultivation has the advantage of preferential wavelength control. Here, we monitored monoterpene contents in hydroponically cultivated Japanese mint leaves under blue, red, or far-red wavelengths of LED light supplements. Volatile cyclic monoterpenes, pulegone, menthone, menthol, and menthofuran were quantified using the head-space solid phase microextraction method. As a result, all light wavelengths promoted the biosynthesis of the compounds. Remarkably, two weeks of blue-light supplement increased all compounds: pulegone (362% increase compared to the control), menthofuran (285%), menthone (223%), and menthol (389%). Red light slightly promoted pulegone (256%), menthofuran (178%), and menthol (197%). Interestingly, the accumulation of menthone (229%) or menthofuran (339%) was observed with far-red light treatment. The quantification of glandular trichomes density revealed that no increase under light supplement was confirmed. Blue light treatment even suppressed the glandular trichome formation. No promotion of photosynthesis was observed by pulse-amplitude-modulation (PAM) fluorometry. The present result indicates that light supplements directly promoted the biosynthetic pathways of cyclic monoterpenes.



2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Peina Zhou ◽  
Mengjiao Yin ◽  
Shilin Dai ◽  
Ke Bao ◽  
Chenglin Song ◽  
...  

Abstract Background Perilla frutescens (L.) Britt is a medicinal and edible plant widely cultivated in Asia. Terpenoids, flavonoids and phenolic acids are the primary source of medicinal ingredients. Glandular trichomes with multicellular structures are known as biochemical cell factories which synthesized specialized metabolites. However, there is currently limited information regarding the site and mechanism of biosynthesis of these constituents in P. frutescens. Herein, we studied morphological features of glandular trichomes, metabolic profiling and transcriptomes through different tissues. Results Observation of light microscopy and scanning electron microscopy indicated the presence of three distinct glandular trichome types based on their morphological features: peltate, capitate, and digitiform glandular trichomes. The oil of peltate glandular trichomes, collected by custom-made micropipettes and analyzed by LC–MS and GC–MS, contained perillaketone, isoegomaketone, and egomaketone as the major constituents which are consistent with the components of leaves. Metabolomics and transcriptomics were applied to explore the bioactive constituent biosynthesis in the leaves, stem, and root of P. frutescens. Transcriptome sequencing profiles revealed differential regulation of genes related to terpenoids, flavonoids, and phenylpropanoid biosynthesis, respectively with most genes expressed highly in leaves. The genes affecting the development of trichomes were preliminarily predicted and discussed. Conclusions The current study established the morphological and chemical characteristics of glandular trichome types of P. frutescens implying the bioactive constituents were mainly synthesized in peltate glandular trichomes. The genes related to bioactive constituents biosynthesis were explored via transcriptomes, which provided the basis for unraveling the biosynthesis of bioactive constituents in this popular medicinal plant.



1997 ◽  
Vol 122 (3) ◽  
pp. 373-379 ◽  
Author(s):  
Richard Grazzini ◽  
Donald Walters ◽  
Jody Harmon ◽  
David J. Hesk ◽  
Diana Cox-Foster ◽  
...  

Diploid zonal geraniums (Pelargonium ×hortorum) are able to resist attack by small arthropod pests such as the two-spotted spider mite (Tetranychus urticae Koch) when exudate produced by tall glandular trichomes contains a high percentage of ω5-unsaturated anacardic acids. Trichomes of susceptible plants exude primarily saturated anacardic acids. Inbred mite-resistant and -susceptible geraniums were reciprocally crossed and the F1, F2, and backcross generations were examined for anacardic acid composition and trichome density. Selected F2 plants were bioassayed for resistance to two-spotted spider mites. High concentrations of ω5-unsaturated anacardic acids in resistant plants are conditioned by a single dominant allele. We propose that inheritance of tall glandular trichome density can be controlled by a small number of loci (possibly as few as one) exhibiting codominance. F2, with low densities of tall glandular trichomes and producing ω5-unsaturated anacardic acids, displayed effective resistance to two-spotted spider mites as measured by mite mortality and fecundity. A genetic model for the biosynthesis of anacardic acids is proposed.



2004 ◽  
Vol 31 (3) ◽  
pp. 267 ◽  
Author(s):  
James L. Smith II ◽  
J. Daniel Hare

Plant trichomes commonly serve a role in mechanical and chemical defence against herbivores, but may also have the potential to alter physiology by reducing the amount of light absorbed by leaves, lowering temperatures, and reducing water loss. Populations of Datura wrightii Regel in southern California produce 'sticky' plants with glandular trichomes and 'velvety' plants bearing non-glandular trichomes. Because stickiness is inherited as a dominant Mendelian trait, and the proportions of sticky plants vary among populations with the moisture availability of their environment, there may be some ecophysiological differences between trichome types that contribute to their ability to survive in a particular geographic location. To examine the possible physiological significance of trichome variation, we measured the spectral properties, midday gas-exchange rates, and water potentials of D. wrightii leaves from sticky and velvety plants growing in a field experiment. The differences in leaf reflectance (0.9%) and absorptance (1.3%) of photosynthetically active radiation (PAR) between trichome types are too small to have any direct physiologically significant effect. Simulations of leaf temperatures based on the difference in leaf absorptances reveal that leaf temperature would be no more than 1°C lower in velvety compared to sticky plants. Gas-exchange measurements revealed no significant difference between types in their transpiration rates or stomatal conductances. In this case, trichome variation may be more important to plant defenses than to physiology.



2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Hongying Zhang ◽  
Xudong Ma ◽  
Wenjiao Li ◽  
Dexin Niu ◽  
Zhaojun Wang ◽  
...  

Abstract Background The plant-specific homeodomain-leucine zipper class IV (HD-ZIP IV) gene family has been involved in the regulation of epidermal development. Results Fifteen genes coding for HD-ZIP IV proteins were identified (NtHD-ZIP-IV-1 to NtHD-ZIP-IV-15) based on the genome of N. tabacum. Four major domains (HD, ZIP, SAD and START) were present in these proteins. Tissue expression pattern analysis indicated that NtHD-ZIP-IV-1, − 2, − 3, − 10, and − 12 may be associated with trichome development; NtHD-ZIP-IV-8 was expressed only in cotyledons; NtHD-ZIP-IV-9 only in the leaf and stem epidermis; NtHD-ZIP-IV-11 only in leaves; and NtHD-ZIP-IV-15 only in the root and stem epidermis. We found that jasmonates may induce the generation of glandular trichomes, and that NtHD-ZIP-IV-1, − 2, − 5, and − 7 were response to MeJA treatment. Dynamic expression under abiotic stress and after application of phytohormones indicated that most NtHD-ZIP IV genes were induced by heat, cold, salt and drought. Furthermore, most of these genes were induced by gibberellic acid, 6-benzylaminopurine, and salicylic acid, but were inhibited by abscisic acid. NtHD-ZIP IV genes were sensitive to heat, but insensitive to osmotic stress. Conclusion NtHD-ZIP IV genes are implicated in a complex regulatory gene network controlling epidermal development and abiotic stress responses. The present study provides evidence to elucidate the gene functions of NtHD-ZIP IVs during epidermal development and stress response.



1980 ◽  
Vol 58 (1) ◽  
pp. 61-67 ◽  
Author(s):  
Earic E. Karrfalt ◽  
Gerald L. Kreitner

The development of the stalked, capitate, glandular trichomes found on the inflorescence axes of Adenocaulon bicolor was studied by light and scanning electron microscopy. The trichomes are not initiated until the stems have essentially ceased to grow in diameter. In early development the trichomes are biseriate, but later become several cells wide partly as the result of contributions from other epidermal cells rather than exclusively from longitudinal divisions in the developing trichome. Cell divisions occur throughout the trichome primordia and are not restricted to an acropetal or basipetal sequence. The mature trichomes are relatively large, 200–250 μm high, but are entirely of epidermal origin.



2022 ◽  
Vol 81 (1) ◽  
Author(s):  
Milan Gavrilović ◽  
Pedja Janaćković

In this study, the micromorphology of the vegetative and reproductive structures of the endemic Centaurea glaberrima Tausch subsp. divergens (Vis.) Hayek (Asteraceae), using scanning electron microscope (SEM), is presented for the first time. Uniseriate whip-like non-glandular and biseriate glandular trichomes are found on the surface of all aboveground parts (stem, leaves, peduncles, involucral bract). On the adaxial leaf epidermis ribbed thickenings (striation pattern) of outer periclinal cell walls, slightly curved anticlinal cell walls and anomocytic stomata are noticed. Rugose abaxial surface with thorny protuberances of the involucral bract is documented. Corolla is glabrous with longitudinally parallel epidermal cells with distinct straight outline. Isopolar, radially symmetric and tricolporate microechinate pollen grains are seen. Short stylar hairs, without cuticular striations, are present along the outer sides of the style, while the inner sides (abaxial surface) constitute the papillate stigmatic surface. Microcharacters found in cypsela are as follows: slightly ribbed body; rotund base; lateral and concave insertion; short, unicellular curly acute trichomes; smooth epidermis; fine-sulcate ornamentation; rod shaped epidermal cells with short, obtuse end walls and straight anticlinal walls; poorly developed minutely dentate pericarp rim; and dimorphic pappus with bristles of different length and morphology, with pinnules restricted to the margins of the bristles. The results obtained contribute to knowledge about the micromorphology of the studied endemic species and provide features for its better identification. The taxonomic significance of the analyzed characters is discussed. Some well defined microcharacters of the studied species might have taxonomic value



Sign in / Sign up

Export Citation Format

Share Document