scholarly journals Spectral properties, gas exchange, and water potential of leaves of glandular and non-glandular trichome types in Datura wrightii (Solanaceae)

2004 ◽  
Vol 31 (3) ◽  
pp. 267 ◽  
Author(s):  
James L. Smith II ◽  
J. Daniel Hare

Plant trichomes commonly serve a role in mechanical and chemical defence against herbivores, but may also have the potential to alter physiology by reducing the amount of light absorbed by leaves, lowering temperatures, and reducing water loss. Populations of Datura wrightii Regel in southern California produce 'sticky' plants with glandular trichomes and 'velvety' plants bearing non-glandular trichomes. Because stickiness is inherited as a dominant Mendelian trait, and the proportions of sticky plants vary among populations with the moisture availability of their environment, there may be some ecophysiological differences between trichome types that contribute to their ability to survive in a particular geographic location. To examine the possible physiological significance of trichome variation, we measured the spectral properties, midday gas-exchange rates, and water potentials of D. wrightii leaves from sticky and velvety plants growing in a field experiment. The differences in leaf reflectance (0.9%) and absorptance (1.3%) of photosynthetically active radiation (PAR) between trichome types are too small to have any direct physiologically significant effect. Simulations of leaf temperatures based on the difference in leaf absorptances reveal that leaf temperature would be no more than 1°C lower in velvety compared to sticky plants. Gas-exchange measurements revealed no significant difference between types in their transpiration rates or stomatal conductances. In this case, trichome variation may be more important to plant defenses than to physiology.

2020 ◽  
Author(s):  
Karla Gasparini ◽  
Ana Carolina R. Souto ◽  
Mateus F. da Silva ◽  
Lucas C. Costa ◽  
Cássia Regina Fernandes Figueiredo ◽  
...  

ABSTRACTBackground and aimsTrichomes are epidermal structures with an enormous variety of ecological functions and economic applications. Glandular trichomes produce a rich repertoire of secondary metabolites, whereas non-glandular trichomes create a physical barrier against biotic and abiotic stressors. Intense research is underway to understand trichome development and function and enable breeding of more resilient crops. However, little is known on how enhanced trichome density would impinge on leaf photosynthesis, gas exchange and energy balance.MethodsPrevious work has compared multiple species differing in trichome density, instead here we analyzed monogenic trichome mutants in a single tomato genetic background (cv. Micro-Tom). We determined growth parameters, leaf spectral properties, gas exchange and leaf temperature in the hairs absent (h), Lanata (Ln) and Woolly (Wo) trichome mutants.Key resultsShoot dry mass, leaf area, leaf spectral properties and cuticular conductance were not affected by the mutations. However, the Ln mutant showed increased carbon assimilation (A) possibly associated with higher stomatal conductance (gs), since there were no differences in stomatal density or stomatal index between genotypes. Leaf temperature was furthermore reduced in Ln in the early hours of the afternoon.ConclusionsWe show that a single monogenic mutation can increase glandular trichome density, a desirable trait for crop breeding, whilst concomitantly improving leaf gas exchange and reducing leaf temperature.HIGHLIGHTA monogenic mutation in tomato increases trichome density and optimizes gas exchange and leaf temperature


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Peina Zhou ◽  
Mengjiao Yin ◽  
Shilin Dai ◽  
Ke Bao ◽  
Chenglin Song ◽  
...  

Abstract Background Perilla frutescens (L.) Britt is a medicinal and edible plant widely cultivated in Asia. Terpenoids, flavonoids and phenolic acids are the primary source of medicinal ingredients. Glandular trichomes with multicellular structures are known as biochemical cell factories which synthesized specialized metabolites. However, there is currently limited information regarding the site and mechanism of biosynthesis of these constituents in P. frutescens. Herein, we studied morphological features of glandular trichomes, metabolic profiling and transcriptomes through different tissues. Results Observation of light microscopy and scanning electron microscopy indicated the presence of three distinct glandular trichome types based on their morphological features: peltate, capitate, and digitiform glandular trichomes. The oil of peltate glandular trichomes, collected by custom-made micropipettes and analyzed by LC–MS and GC–MS, contained perillaketone, isoegomaketone, and egomaketone as the major constituents which are consistent with the components of leaves. Metabolomics and transcriptomics were applied to explore the bioactive constituent biosynthesis in the leaves, stem, and root of P. frutescens. Transcriptome sequencing profiles revealed differential regulation of genes related to terpenoids, flavonoids, and phenylpropanoid biosynthesis, respectively with most genes expressed highly in leaves. The genes affecting the development of trichomes were preliminarily predicted and discussed. Conclusions The current study established the morphological and chemical characteristics of glandular trichome types of P. frutescens implying the bioactive constituents were mainly synthesized in peltate glandular trichomes. The genes related to bioactive constituents biosynthesis were explored via transcriptomes, which provided the basis for unraveling the biosynthesis of bioactive constituents in this popular medicinal plant.


Symmetry ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 13 ◽  
Author(s):  
Jiansheng Guo ◽  
Cheng Zhou

Pogostemon auricularius, an aromatic plant in Lamiaceae, has wide application in pharmaceutical preparations. However, little is known about the secretory structures that contain the medicinal compounds. In this study, two kinds of glandular trichome types, including peltate glandular trichomes and short-stalked capitate trichomes, were identified in the leaves and stems by cryo-scanning electron microscope. Oil secretion from the glands contained lipids, flavones, and terpenes, and the progresses of secretion were different in the two glands types. The investigation by transmission electron microscope indicated that the endoplasmic reticulum system and plastids were involved in the biosynthesis of oils in the two glandular trichomes. The vacuoles showed a new role in the oil preparations and storage. The synthesized oil could be transported from the head cell to the sub-cuticular space by different way in the two glands. Comparative analysis of the development, distribution, histochemistry and ultrastructures of the secretory structures in Pogostemon auricularius led us to propose that the two glands may make different contribution to the collection of medicinal compounds. Furthermore, the characteristics of two glands in the secretory stage probably indicated the synthesizing site of metabolite.


Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1267
Author(s):  
Tatiana A. Feodorova ◽  
Oleg S. Alexandrov

Poplars from Aigeiros Duby section are very widespread in the world. A range of morphological characters were studied in such species of this section as Populus deltoides Bartram ex Marshall, P. nigra L. and their hybrid P. × canadensis Moench. However, there is little information about micromorphological characters of their leaves. The aim of this work was to study these characters and understand their species-specific potential. Thus, the morphological features, density and distribution of non-glandular trichoms, marginal glandular trichomes (salicoid teeth or coleters), epiglandular trichomes and basilaminar nectaries-glands were ontogenetically examined by both light and scanning electron microscopy in the certified by molecular markers P. deltoides, P. nigra and P. × canadensis samples. Non-glandular trichomes belong to the uni-, multicellular, uniseriate category. Marginal glandular trichomes can be classified as coleter types. Other morphological and anatomical trichome features are discussed with regard to their possible function. In summary, some variations in leaf morphology may be useful for the P. nigra, P. deltoides and their hybrid P. × canadensis species identification. These species differ in shape and number of basilaminar glands, as well as non-glandular trichome types and their distribution on the leaf.


Euphytica ◽  
2021 ◽  
Vol 217 (3) ◽  
Author(s):  
Joris Santegoets ◽  
Marcella Bovio ◽  
Wendy van’t Westende ◽  
Roeland E. Voorrips ◽  
Ben Vosman

AbstractThe greenhouse whitefly Trialeurodes vaporariorum is a major threat in tomato cultivation. In greenhouse grown tomatoes non-trichome based whitefly resistance may be better suited than glandular trichome based resistance as glandular trichomes may interfere with biocontrol, which is widely used. Analysis of a collection of recombinant inbred lines derived from a cross between Solanum lycopersicum and Solanum galapagense showed resistance to the whitefly T. vaporariorum on plants without glandular trichomes type IV. The resistance affected whitefly adult survival (AS), but not oviposition rate. This indicates that S. galapagense, in addition to trichome based resistance, also carries non-trichome based resistance components. The effectiveness of the non-trichome based resistance appeared to depend on the season in which the plants were grown. The resistance also had a small but significant effect on the whitefly Bemisia tabaci, but not on the thrips Frankliniella occidentalis. A segregating F2 population was created to map the non-trichome based resistance. Two Quantitative trait loci (QTLs) for reduced AS of T. vaporariorum were mapped on chromosomes 12 and 7 (explaining 13.9% and 6.0% of the variance respectively). The QTL on chromosome 12 was validated in F3 lines.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4166
Author(s):  
Agata Konarska ◽  
Elżbieta Weryszko-Chmielewska ◽  
Anna Matysik-Woźniak ◽  
Aneta Sulborska ◽  
Beata Polak ◽  
...  

The aim of this study was to conduct a histochemical analysis to localize lipids, terpenes, essential oil, and iridoids in the trichomes of the L. album subsp. album corolla. Morphometric examinations of individual trichome types were performed. Light and scanning electron microscopy techniques were used to show the micromorphology and localization of lipophilic compounds and iridoids in secretory trichomes with the use of histochemical tests. Additionally, the content of essential oil and its components were determined using gas chromatography-mass spectrometry (GC-MS). Qualitative analyses of triterpenes carried out using high-performance thin-layer chromatography (HPTLC) coupled with densitometric detection, and the iridoid content expressed as aucubin was examined with spectrophotometric techniques. We showed the presence of iridoids and different lipophilic compounds in papillae and glandular and non-glandular trichomes. On average, the flowers of L. album subsp. album yielded 0.04 mL/kg of essential oil, which was dominated by aldehydes, sesquiterpenes, and alkanes. The extract of the L. album subsp. album corolla contained 1.5 × 10−3 ± 4.3 × 10−4 mg/mL of iridoid aucubin and three triterpenes: oleanolic acid, β-amyrin, and β-amyrin acetate. Aucubin and β-amyrin acetate were detected for the first time. We suggest the use of L. album subsp. album flowers as supplements in human nutrition.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 930
Author(s):  
Xu Yu ◽  
Xiwu Qi ◽  
Shumin Li ◽  
Hailing Fang ◽  
Yang Bai ◽  
...  

Light is a key environmental aspect that regulates secondary metabolic synthesis. The essential oil produced in mint (Mentha canadensis L.) leaves is used widely in the aromatics industry and in medicine. Under low-light treatment, significant reductions in peltate glandular trichome densities were observed. GC-MS analysis showed dramatically reduced essential oil and menthol contents. Light affected the peltate glandular trichomes’ development and essential oil yield production. However, the underlying mechanisms of this regulation were elusive. To identify the critical genes during light-regulated changes in oil content, following a 24 h darkness treatment and a 24 h recovery light treatment, leaves were collected for transcriptome analysis. A total of 95,579 unigenes were obtained, with an average length of 754 bp. About 56.58% of the unigenes were annotated using four public protein databases: 10,977 differentially expressed genes (DEGs) were found to be involved in the light signaling pathway and monoterpene synthesis pathway. Most of the TPs showed a similar expression pattern: downregulation after darkness treatment and upregulation after the return of light. In addition, the genes involved in the light signal transduction pathway were analyzed. A series of responsive transcription factors (TFs) were identified and could be used in metabolic engineering as an effective strategy for increasing essential oil yields.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1420
Author(s):  
Takahiro Ueda ◽  
Miki Murata ◽  
Ken Yokawa

Environmental light conditions influence the biosynthesis of monoterpenes in the mint plant. Cyclic terpenes, such as menthol, menthone, pulegone, and menthofuran, are major odor components synthesized in mint leaves. However, it is unclear how light for cultivation affects the contents of these compounds. Artificial lighting using light-emitting diodes (LEDs) for plant cultivation has the advantage of preferential wavelength control. Here, we monitored monoterpene contents in hydroponically cultivated Japanese mint leaves under blue, red, or far-red wavelengths of LED light supplements. Volatile cyclic monoterpenes, pulegone, menthone, menthol, and menthofuran were quantified using the head-space solid phase microextraction method. As a result, all light wavelengths promoted the biosynthesis of the compounds. Remarkably, two weeks of blue-light supplement increased all compounds: pulegone (362% increase compared to the control), menthofuran (285%), menthone (223%), and menthol (389%). Red light slightly promoted pulegone (256%), menthofuran (178%), and menthol (197%). Interestingly, the accumulation of menthone (229%) or menthofuran (339%) was observed with far-red light treatment. The quantification of glandular trichomes density revealed that no increase under light supplement was confirmed. Blue light treatment even suppressed the glandular trichome formation. No promotion of photosynthesis was observed by pulse-amplitude-modulation (PAM) fluorometry. The present result indicates that light supplements directly promoted the biosynthetic pathways of cyclic monoterpenes.


2009 ◽  
Vol 87 (2) ◽  
pp. 139-151 ◽  
Author(s):  
Strahan Tucker ◽  
W. Don Bowen ◽  
Sara J. Iverson ◽  
Garry B. Stenson

Individuals of different age, sex, and morphology are expected to exhibit differences in dietary niches largely owing to sexual dimorphism, ontogenetic niche shifts, and resource polymorphism. Harp ( Pagophilus groenlandicus (Erxleben, 1777)) and hooded ( Cystophora cristata (Erxleben, 1777)) seals are geographically overlapping and highly migratory predators in the North Atlantic Ocean. These species differ in their diving behaviour, with hooded seals diving deeper, longer, and more associated with the continental shelf edge and deep ocean than harp seals. We examined blubber fatty acid (FA) composition (N = 37; 93% of total FA by mass) of harp (adults N = 294; juveniles N = 232) and hooded (adults N = 118; juveniles N = 38) seals to test hypotheses about sources of intrinsic (age and sex) and extrinsic (geographic location, season, year) variations in diets. A significant difference in FA profiles suggested dietary segregation between species. We found significant effects of sex and age class on FA profiles, with these being more pronounced in the highly size-dimorphic hooded seals than in harp seals. FA profiles of both species also varied between inshore and offshore sampling locations and between prebreeding and postbreeding periods. Finally, FA profiles of harp seals differed among years, which was coincident with large changes in prey distribution and availability in the mid-1990s.


2011 ◽  
Vol 35 (1) ◽  
pp. 61-67 ◽  
Author(s):  
Fernanda Carlota Nery ◽  
Hilton Morbeck de Oliveira ◽  
Amauri Alves de Alvarenga ◽  
Sara Dousseau ◽  
Evaristo Mauro de Castro ◽  
...  

Ecophysiological studies under semi-controlled conditions in nurseries and greenhouses are essential to enable the use of native species to recover degraded areas and for commercial planting. Talisia subalbens (Mart) Radlk, 'cascudo', is a native fruiting species of the Cerrado on the verge of extinction. The ecophysiological performance of this species was evaluated in nursery conditions under different levels of shading (full sunshine, 30%, 50% and 70%). Initial growth, biomass allocation, gas exchange and chlorophyll content of the plants were analyzed. Full sunshine cultivated plants showed a higher accumulation of total, shoot, and root dry biomass. There was no significant difference in the root/shoot ratio among the treatments. Seedlings cultivated under full sunshine and 30% shading showed higher values for height, basal diameter, and leaf area. Differences in stomata conductance and photosynthesis rate were not observed among the different shading levels. Plants cultivated under 70% of shading had higher contents of chlorophyll a, b, and total. During the initial phase with higher levels of radiation were fundamental for the development of T. subalbens seedlings.


Sign in / Sign up

Export Citation Format

Share Document