Intracellular distribution of α-galactosidase in leaves of Cucurbita pepo

1979 ◽  
Vol 57 (18) ◽  
pp. 1904-1911 ◽  
Author(s):  
Brian Thomas ◽  
John A. Webb

The intracellular distribution of α-galactosidase in leaves of Cucurbita pepo was studied at different developmental stages using tissue strips, homogenates, and isolated protoplasts. About 85% of the total activity was found in the 500 g supernatant after tissues were homogenized either in water, in buffer at pH 5.6 or at pH 7.0, or in buffer containing 0.8 M KCl. Isolated protoplasts contained less than 10% of the total activity which was confined to the 20 000 g supernatant after lysis. p-Nitrophenyl-α-D-galactoside was readily hydrolysed when incubated with leaf strips but less than 3% of α-galactosidase could be leached from strips held for 4 h in 100 mM phosophate buffer or in buffer containing either 0.8 M KCl, 1 mM EDTA, or 1 mM dithioerythritol. It is concluded that at all stages of leaf development a high proportion of α-galactosidase is located in the exocellular region, not strongly bound either to the outer surface of the plasmalemma or to the cell wall but prevented from diffusing through the wall matrix by some physical attribute such as molecular size. Enzyme release occurred only following breakage or enzymatic digestion of the wall. The in vivo properties of the exocellular enzyme in leaf strips were compared with those of three molecular forms of α-galactosidase (LI, LII, and LIII) which were partially purified from mature leaves. The exocellular enzyme was active over a broad pH range with optima at pH 3.0 and pH 6.0; this resembles a combination of pH optima for LI and LIII. Inhibition by Cu2+ and p-chloromercuribenzoate resembled that for LIII and LII, respectively. Galactose and galactinol at a 5 mM concentration were 25–30% inhibitory for all enzyme preparations; melibiose, raffinose, and stachyose were very weakly inhibitory. The function of an exocellular α-galactosidase and its bearing on the transport of galactosylsucrose oligosaccharides to and from the minor veins of C. pepo are discussed.

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 776
Author(s):  
Shipra Kumari ◽  
Bashistha Kumar Kanth ◽  
Ju young Ahn ◽  
Jong Hwa Kim ◽  
Geung-Joo Lee

Genome-wide transcriptome analysis using RNA-Seq of Lilium longiflorum revealed valuable genes responding to biotic stresses. WRKY transcription factors are regulatory proteins playing essential roles in defense processes under environmental stresses, causing considerable losses in flower quality and production. Thirty-eight WRKY genes were identified from the transcriptomic profile from lily genotypes, exhibiting leaf blight caused by Botrytis elliptica. Lily WRKYs have a highly conserved motif, WRKYGQK, with a common variant, WRKYGKK. Phylogeny of LlWRKYs with homologous genes from other representative plant species classified them into three groups- I, II, and III consisting of seven, 22, and nine genes, respectively. Base on functional annotation, 22 LlWRKY genes were associated with biotic stress, nine with abiotic stress, and seven with others. Sixteen unique LlWRKY were studied to investigate responses to stress conditions using gene expression under biotic and abiotic stress treatments. Five genes—LlWRKY3, LlWRKY4, LlWRKY5, LlWRKY10, and LlWRKY12—were substantially upregulated, proving to be biotic stress-responsive genes in vivo and in vitro conditions. Moreover, the expression patterns of LlWRKY genes varied in response to drought, heat, cold, and different developmental stages or tissues. Overall, our study provides structural and molecular insights into LlWRKY genes for use in the genetic engineering in Lilium against Botrytis disease.


2021 ◽  
pp. 114341
Author(s):  
Catherine Nuwagira ◽  
Emanuel L. Peter ◽  
Clement Olusoji Ajayi ◽  
John Adriko ◽  
Kagoro-Rugunda Grace ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Aliki Xanthopoulou ◽  
Javier Montero-Pau ◽  
Belén Picó ◽  
Panagiotis Boumpas ◽  
Eleni Tsaliki ◽  
...  

Abstract Background Summer squash (Cucurbita pepo: Cucurbitaceae) are a popular horticultural crop for which there is insufficient genomic and transcriptomic information. Gene expression atlases are crucial for the identification of genes expressed in different tissues at various plant developmental stages. Here, we present the first comprehensive gene expression atlas for a summer squash cultivar, including transcripts obtained from seeds, shoots, leaf stem, young and developed leaves, male and female flowers, fruits of seven developmental stages, as well as primary and lateral roots. Results In total, 27,868 genes and 2352 novel transcripts were annotated from these 16 tissues, with over 18,000 genes common to all tissue groups. Of these, 3812 were identified as housekeeping genes, half of which assigned to known gene ontologies. Flowers, seeds, and young fruits had the largest number of specific genes, whilst intermediate-age fruits the fewest. There also were genes that were differentially expressed in the various tissues, the male flower being the tissue with the most differentially expressed genes in pair-wise comparisons with the remaining tissues, and the leaf stem the least. The largest expression change during fruit development was early on, from female flower to fruit two days after pollination. A weighted correlation network analysis performed on the global gene expression dataset assigned 25,413 genes to 24 coexpression groups, and some of these groups exhibited strong tissue specificity. Conclusions These findings enrich our understanding about the transcriptomic events associated with summer squash development and ripening. This comprehensive gene expression atlas is expected not only to provide a global view of gene expression patterns in all major tissues in C. pepo but to also serve as a valuable resource for functional genomics and gene discovery in Cucurbitaceae.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dror Sever ◽  
Anat Hershko-Moshe ◽  
Rohit Srivastava ◽  
Roy Eldor ◽  
Daniel Hibsher ◽  
...  

AbstractNF-κB is a well-characterized transcription factor, widely known for its roles in inflammation and immune responses, as well as in control of cell division and apoptosis. However, its function in β-cells is still being debated, as it appears to depend on the timing and kinetics of its activation. To elucidate the temporal role of NF-κB in vivo, we have generated two transgenic mouse models, the ToIβ and NOD/ToIβ mice, in which NF-κB activation is specifically and conditionally inhibited in β-cells. In this study, we present a novel function of the canonical NF-κB pathway during murine islet β-cell development. Interestingly, inhibiting the NF-κB pathway in β-cells during embryogenesis, but not after birth, in both ToIβ and NOD/ToIβ mice, increased β-cell turnover, ultimately resulting in a reduced β-cell mass. On the NOD background, this was associated with a marked increase in insulitis and diabetes incidence. While a robust nuclear immunoreactivity of the NF-κB p65-subunit was found in neonatal β-cells, significant activation was not detected in β-cells of either adult NOD/ToIβ mice or in the pancreata of recently diagnosed adult T1D patients. Moreover, in NOD/ToIβ mice, inhibiting NF-κB post-weaning had no effect on the development of diabetes or β-cell dysfunction. In conclusion, our data point to NF-κB as an important component of the physiological regulatory circuit that controls the balance of β-cell proliferation and apoptosis in the early developmental stages of insulin-producing cells, thus modulating β-cell mass and the development of diabetes in the mouse model of T1D.


Aquaculture ◽  
2021 ◽  
Vol 535 ◽  
pp. 736381
Author(s):  
Geovanna Carla Zacheo Coelho ◽  
Dilberto Ribeiro Arashiro ◽  
Tamiris Disselli ◽  
Matheus Pereira-Santos ◽  
Tatiana María Mira-López ◽  
...  

2021 ◽  
Vol 22 (5) ◽  
pp. 2285
Author(s):  
Thu Hang Lai ◽  
Susann Schröder ◽  
Magali Toussaint ◽  
Sladjana Dukić-Stefanović ◽  
Mathias Kranz ◽  
...  

The adenosine A2A receptor (A2AR) represents a potential therapeutic target for neurodegenerative diseases. Aiming at the development of a positron emission tomography (PET) radiotracer to monitor changes of receptor density and/or occupancy during the A2AR-tailored therapy, we designed a library of fluorinated analogs based on a recently published lead compound (PPY). Among those, the highly affine 4-fluorobenzyl derivate (PPY1; Ki(hA2AR) = 5.3 nM) and the 2-fluorobenzyl derivate (PPY2; Ki(hA2AR) = 2.1 nM) were chosen for 18F-labeling via an alcohol-enhanced copper-mediated procedure starting from the corresponding boronic acid pinacol ester precursors. Investigations of the metabolic stability of [18F]PPY1 and [18F]PPY2 in CD-1 mice by radio-HPLC analysis revealed parent fractions of more than 76% of total activity in the brain. Specific binding of [18F]PPY2 on mice brain slices was demonstrated by in vitro autoradiography. In vivo PET/magnetic resonance imaging (MRI) studies in CD-1 mice revealed a reasonable high initial brain uptake for both radiotracers, followed by a fast clearance.


1995 ◽  
Vol 269 (4) ◽  
pp. C856-C862 ◽  
Author(s):  
H. Sveistrup ◽  
R. Y. Chan ◽  
B. J. Jasmin

We determined levels of mRNA encoding acetylcholinesterase (AChE) in muscles of rats subjected to chronic enhancement of neuromuscular activation. After 8 wk of voluntary wheel running, extensor digitorum longus (EDL) muscles displayed a 72% increase in total AChE activity as a result of a selective threefold increase in the G4 content. Soleus muscles, on the other hand, exhibited a 30% decrease in A12 while displaying a small (33%) increase in total AChE activity. These enzymatic adaptations were paralleled by increases in the levels of AChE mRNAs in both EDL (32%; P < 0.03) and soleus (42%; P < 0.02) muscles. In addition, compensatory hypertrophy of the plantaris muscle increased total AChE activity by 75%. This change was reflected by an elevation in all AChE molecular forms with A12 (89%) and A8 (179%) showing the most prominent increases. Similar to exercise-trained muscles, hypertrophied plantaris muscles displayed an increase in AChE transcripts (25%; P < 0.04). These results indicate that increases in neuromuscular activity modulate expression of the AChE gene in vivo and suggest the involvement of pretranslational regulatory mechanisms in the adaptive response of AChE to enhanced neuromuscular activation.


1986 ◽  
Vol 102 (3) ◽  
pp. 762-768 ◽  
Author(s):  
M Nicolet ◽  
M Pinçon-Raymond ◽  
F Rieger

After denervation in vivo, the frog cutaneus pectoris muscle can be led to degenerate by sectioning the muscle fibers on both sides of the region rich in motor endplate, leaving, 2 wk later, a muscle bridge containing the basal lamina (BL) sheaths of the muscle fibers (28). This preparation still contains various tissue remnants and some acetylcholine receptor-containing membranes. A further mild extraction by Triton X-100, a nonionic detergent, gives a pure BL sheath preparation, devoid of acetylcholine receptors. At the electron microscope level, this latter preparation is essentially composed of the muscle BL with no attached plasmic membrane and cellular component originating from Schwann cells or macrophages. Acetylcholinesterase is still present in high amounts in this BL sheath preparation. In both preparations, five major molecular forms (18, 14, 11, 6, and 3.5 S) can be identified that have either an asymmetric or a globular character. Their relative amount is found to be very similar in the BL and in the motor endplate-rich region of control muscle. Thus, observations show that all acetylcholinesterase forms can be accumulated in frog muscle BL.


2012 ◽  
Vol 303 (8) ◽  
pp. R850-R860 ◽  
Author(s):  
Miriam Goebel-Stengel ◽  
Andreas Stengel ◽  
Lixin Wang ◽  
Gordon Ohning ◽  
Yvette Taché ◽  
...  

Various molecular forms of CCK reduce food intake in rats. Although CCK-8 is the most studied form, we reported that CCK-58 is the only detectable endocrine peptide form in rats. We investigated the dark-phase rat chow intake pattern following injection of CCK-8 and CCK-58. Ad libitum-fed male Sprague-Dawley rats were intraperitoneally injected with CCK-8, CCK-58 (0.6, 1.8, and 5.2 nmol/kg), or vehicle. Food intake pattern was assessed during the dark phase using an automated weighing system that allowed continuous undisturbed monitoring of physiological eating behavior. Both CCK-8 and CCK-58 dose dependently reduced 1-h, dark-phase food intake, with an equimolar dose of 1.8 nmol being similarly effective (−49% and −44%). CCK-58 increased the latency to the first meal, whereas CCK-8 did not. The intermeal interval was reduced after CCK-8 (1.8 nmol/kg, −41%) but not after CCK-58. At this dose, CCK-8 increased the satiety ratio by 80% and CCK-58 by 160%, respectively, compared with vehicle. When behavior was assessed manually, CCK-8 reduced locomotor activity (−31%), whereas grooming behavior was increased (+59%). CCK-58 affected neither grooming nor locomotor activity. In conclusion, reduction of food intake by CCK-8 and CCK-58 is achieved by differential modulation of food intake microstructure and behavior. These data highlight the importance of studying the molecular forms of peptides that exist in vivo in tissue and circulation of the animal being studied.


2010 ◽  
Vol 70 (2) ◽  
pp. 425-434 ◽  
Author(s):  
WR Barrionuevo ◽  
MN Fernandes ◽  
O Rocha

In order to verify the influence of chronic and acute ambient oxygen levels from egg to adult stage of the zebrafish, in vivo oxygen consumption (MO2), critical tensions of oxygen (Pcrit), heart rate (fH) and total body lactate concentration (Lc) were determined for Danio rerio (Hamilton, 1822) raised at 28 °C under normoxic (7.5 mgO2.L-1 or 80 mm.Hg-1) and hypoxic conditions (4.3 mgO2.L-1) and exposed to acute hypoxia during different developmental stages. Our findings confirmed that very early stages do not respond effectively to ambient acute hypoxia. However, after the stage corresponding to the age of 30 days, D. rerio was able to respond to acute hypoxia through effective physiological mechanisms involving aerobic and anaerobic metabolism. Such responses were more efficient for the fishes reared under hypoxia which showed that D. rerio survival capability increased during acclimation to mild hypoxia. Measurements of body mass and length showed that moderate hypoxia did not affect growth significantly until the fish reached the stage of 60 days. Moreover, a growth delay was verified for the hypoxic-reared animals. Also, the D. rerio eggs-to-larvae survival varied from 87.7 to 62.4% in animals reared under normoxia and mild hypoxia, respectively. However, the surviving animals raised under moderated hypoxia showed a better aptitude to regulate aerobic and anaerobic capacities when exposed to acute hypoxia.


Sign in / Sign up

Export Citation Format

Share Document