Germinated grains: a superior whole grain functional food?

2013 ◽  
Vol 91 (6) ◽  
pp. 429-441 ◽  
Author(s):  
Kristina Nelson ◽  
Lily Stojanovska ◽  
Todor Vasiljevic ◽  
Michael Mathai

Grains are global dietary staples that when consumed in whole grain form, offer considerable health benefits compared with milled grain foods, including reduced body weight gain and reduced cardiovascular and diabetes risks. Dietary patterns, functional foods, and other lifestyle factors play a fundamental role in the development and management of epidemic lifestyle diseases that share risks of developing adverse metabolic outcomes, including hyperglycaemia, hypertension, dyslipidaemia, oxidative stress, and inflammation. Whole grains provide energy, nutrients, fibres, and bioactive compounds that may synergistically contribute to their protective effects. Despite their benefits, the intake of grains appears to be lower than recommended in many countries. Of emerging interest is the application of germination processes, which may significantly enhance the nutritional and bioactive content of grains, as well as improve palatability. Enhancing grain foods in a natural way using germination techniques may therefore offer a practical, natural, dietary intervention to increase the health benefits and acceptability of whole grains, with potentially widespread effects across populations in attenuating adverse lifestyle disease outcomes. Continuing to build on the growing body of in-vitro studies requires substantiation with extended in-vivo trials so that we may further develop our understanding of the potential of germinated grains as a functional food.

2019 ◽  
Vol 121 (8) ◽  
pp. 914-937 ◽  
Author(s):  
Eden M. Barrett ◽  
Marijka J. Batterham ◽  
Sumantra Ray ◽  
Eleanor J. Beck

AbstractWhole grain intake is associated with lower CVD risk in epidemiological studies. It is unclear to what extent cereal fibre, located primarily within the bran, is responsible. This review aimed to evaluate association between intake of whole grain, cereal fibre and bran and CVD risk. Academic databases were searched for human studies published before March 2018. Observational studies reporting whole grain and cereal fibre or bran intake in association with any CVD-related outcome were included. Studies were separated into those defining whole grain using a recognised definition (containing the bran, germ and endosperm in their natural proportions) (three studies, seven publications) and those using an alternative definition, such as including added bran as a whole grain source (eight additional studies, thirteen publications). Intake of whole grain, cereal fibre and bran were similarly associated with lower risk of CVD-related outcomes. Within the initial analysis, where studies used the recognised whole grain definition, results were less likely to show attenuation after adjustment for cereal fibre content. The fibre component of grain foods appears to play an important role in protective effects of whole grains. Adjusting for fibre content, associations remained, suggesting that additional components within the whole grain, and the bran component, may contribute to cardio-protective association. The limited studies and considerable discrepancy in defining and calculating whole grain intake limit conclusions. Future research should utilise a consistent definition and methodical approach of calculating whole grain intake to contribute to a greater body of consistent evidence surrounding whole grains.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sung-Yong Hong ◽  
Ephraim Lansky ◽  
Sam-Sog Kang ◽  
Mihi Yang

Abstract Background Pears have been world-widely used as a sweet and nutritious food and a folk medicine for more than two millennia. Methods We conducted a review from ancient literatures to current reports to extract evidence-based functions of pears. Results We found that pears have many active compounds, e.g., flavonoids, triterpenoids, and phenolic acids including arbutin, chlorogenic acid, malaxinic acid, etc. Most of researchers agree that the beneficial compounds are concentrated in the peels. From various in vitro, in vivo, and human studies, the medicinal functions of pears can be summarized as anti-diabetic,-obese, −hyperlipidemic, −inflammatory, −mutagenic, and -carcinogenic effects, detoxification of xenobiotics, respiratory and cardio-protective effects, and skin whitening effects. Therefore, pears seem to be even effective for prevention from Covid-19 or PM2.5 among high susceptible people with multiple underlying diseases. Conclusion For the current or post Covid-19 era, pears have potential for functional food or medicine for both of communicable and non-communicable disease.


2020 ◽  
Vol 78 (Supplement_1) ◽  
pp. 61-68
Author(s):  
Bin Tan ◽  
Na-Na Wu ◽  
Xiao-Tong Zhai

Abstract Owing to the health benefits associated with whole grains, there has been a sustained global effort to increase their consumption, with many countries developing guidelines for recommended amounts of whole grain intake. In China, the consumption of whole grains is low. This is due, in part, to technical obstacles in the development of whole grain foods. This review focuses on possible solutions in the whole value chain and the application of new food technologies to develop whole grain foods that taste better, have more appealing texture, are safe to consume, and better retain bioactive compounds.


Nutrients ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 713
Author(s):  
Jeanne Alard ◽  
Benoit Cudennec ◽  
Denise Boutillier ◽  
Véronique Peucelle ◽  
Amandine Descat ◽  
...  

Since alterations of the gut microbiota have been shown to play a major role in obesity, probiotics have attracted attention. Our aim was to identify probiotic candidates for the management of obesity using a combination of in vitro and in vivo approaches. We evaluated in vitro the ability of 23 strains to limit lipid accumulation in adipocytes and to enhance the secretion of satiety-promoting gut peptide in enteroendocrine cells. Following the in vitro screening, selected strains were further investigated in vivo, single, or as mixtures, using a murine model of diet-induced obesity. Strain Bifidobacterium longum PI10 administrated alone and the mixture of B. animalis subsp. lactis LA804 and Lactobacillus gasseri LA806 limited body weight gain and reduced obesity-associated metabolic dysfunction and inflammation. These protective effects were associated with changes in the hypothalamic gene expression of leptin and leptin receptor as well as with changes in the composition of gut microbiota and the profile of bile acids. This study provides crucial clues to identify new potential probiotics as effective therapeutic approaches in the management of obesity, while also providing some insights into their mechanisms of action.


2012 ◽  
Vol 16 (4) ◽  
pp. 743-751 ◽  
Author(s):  
Elaine McMackin ◽  
Moira Dean ◽  
Jayne V Woodside ◽  
Michelle C McKinley

AbstractObjectiveTo explore current awareness and perceptions of whole grain foods and perceived barriers and facilitators of whole grain consumption.DesignFocus groups were conducted to investigate consumer attitudes to whole grains. Discussions were transcribed verbatim and analysed thematically.SettingDiscussions were held throughout Northern Ireland with adults who were at least partly responsible for food shopping.SubjectsSeven focus groups were held (n 43; thirty-three females, ten males).ResultsAll participants were aware of the term ‘whole grain’ and had a basic level of awareness of their health benefits. Prominent barriers and facilitators of whole grain intake were related to perceptions of the sensory properties (most dominant factor) of whole grains; knowledge of how to locate, identify and use whole grains; and awareness of the health benefits, perceived cost and family influences. Parents of young children appeared to be altruistically motivated with many stating they wanted to ensure their children consumed whole grains in order to establish good eating habits.ConclusionsParticipants were generally aware of the term ‘whole grain’; however, even against a background of increased availability and promotion of whole grain foods, many key barriers to whole grain consumption were still evident. Alongside general education efforts, opportunities and challenges exist for the food industry to develop novel, but affordable, food products that are able to deliver whole grains in a wide variety of forms, including whole grains ‘in disguise’ for those who are most resistant to change.


Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2170 ◽  
Author(s):  
Shara Foster ◽  
Eleanor Beck ◽  
Jaimee Hughes ◽  
Sara Grafenauer

Whole grains may assist in reducing risk of non-communicable disease, but consumption is limited in many countries. In Australia, the reasons for poor consumption are not well understood. The aim of this study was to investigate consumers’ knowledge, attitudes and identification of whole grains, incorporating an exploration of factors influencing consumption, promotion and provision. An online semi-structured questionnaire was used to gather responses from 735 participants (61% complete responses). Although 92% of respondents consumed grains, only 8% reported an intake consistent with age and gender recommendations. Refined pasta and rice were the most frequently purchased grain foods followed by wholemeal/whole grain bread. Of whole grain foods, bread and breakfast cereals were consumed more frequently. However, overall, participants did not prioritise consumption of whole grains. Despite this, 93% of participants had seen food packaging information drawing attention to whole grain content, with a high proportion describing whole grain as less processed (72%) or high in dietary fibre (67%). Two-thirds were aware of health benefits but stated that if they had further information, they would be more likely to swap to whole grain. Further education, increasing exposure, accessibility and extensive promotion of whole grain health benefits are required to facilitate whole grain consumption. Furthermore, removing the negative stigma associated with carbohydrate foods, including grains, will be necessary to improve consumption.


2020 ◽  
Vol 21 (6) ◽  
pp. 2084 ◽  
Author(s):  
Abdullah Shaito ◽  
Anna Maria Posadino ◽  
Nadin Younes ◽  
Hiba Hasan ◽  
Sarah Halabi ◽  
...  

Due to its health benefits, resveratrol (RE) is one of the most researched natural polyphenols. Resveratrol’s health benefits were first highlighted in the early 1990s in the French paradox study, which opened extensive research activity into this compound. Ever since, several pharmacological activities including antioxidant, anti-aging, anti-inflammatory, anti-cancerous, anti-diabetic, cardioprotective, and neuroprotective properties, were attributed to RE. However, results from the available human clinical trials were controversial concerning the protective effects of RE against diseases and their sequelae. The reason for these conflicting findings is varied but differences in the characteristics of the enrolled patients, RE doses used, and duration of RE supplementation were proposed, at least in part, as possible causes. In particular, the optimal RE dosage capable of maximizing its health benefits without raising toxicity issues remains an area of extensive research. In this context, while there is a consistent body of literature on the protective effects of RE against diseases, there are relatively few reports investigating its possible toxicity. Indeed, toxicity and adverse effects were reported following consumption of RE; therefore, extensive future studies on the long-term effects, as well as the in vivo adverse effects, of RE supplementation in humans are needed. Furthermore, data on the interactions of RE when combined with other therapies are still lacking, as well as results related to its absorption and bioavailability in the human body. In this review, we collect and summarize the available literature about RE toxicity and side effects. In this process, we analyze in vitro and in vivo studies that have addressed this stilbenoid. These studies suggest that RE still has an unexplored side. Finally, we discuss the new delivery methods that are being employed to overcome the low bioavailability of RE.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


2019 ◽  
Author(s):  
C. Tigrine ◽  
A. Kameli

In this study a polyphenolic extract from Cleome arabica leaves (CALE) was investigated for its antioxidant activity in vitro using DPPH•, metal chelating and reducing power methods and for its protective effects against AraC-induced hematological toxicity in vivo using Balb C mice. Results indicated that CALE exhibited a strong and dose-dependent scavenging activity against the DPPH• free radical (IC50 = 4.88 μg/ml) and a high reducing power activity (EC50 = 4.85 μg/ml). Furthermore, it showed a good chelating effects against ferrous ions (IC50 = 377.75 μg/ml). The analysis of blood showed that subcutaneous injection of AraC (50 mg/kg) to mice during three consecutive days caused a significant myelosupression (P < 0.05). The combination of CALE and AraC protected blood cells from a veritable toxicity. Where, the number of the red cells, the amount of hemoglobin and the percentage of the hematocrite were significantly high. On the other hand, AraC cause an elevation of body temperature (39 °C) in mice. However, the temperature of the group treated with CALE and AraC remained normal and did not exceed 37.5 °C. The observed biological effects of CALE, in vitro as well as in vivo, could be due to the high polyphenol and flavonoid contents. In addition, the antioxidant activity of CALE suggested to be responsible for its hematoprotective effect.


2020 ◽  
Vol 18 ◽  
Author(s):  
Zirui Zhang ◽  
Shangcong Han ◽  
Panpan Liu ◽  
Xu Yang ◽  
Jing Han ◽  
...  

Background: Chronic inflammation and lack of angiogenesis are the important pathological mechanisms in deep tissue injury (DTI). Curcumin is a well-known anti-inflammatory and antioxidant agent. However, curcumin is unstable under acidic and alkaline conditions, and can be rapidly metabolized and excreted in the bile, which shortens its bioactivity and efficacy. Objective: This study aimed to prepare curcumin-loaded poly (lactic-co-glycolic acid) nanoparticles (CPNPs) and to elucidate the protective effects and underlying mechanisms of wound healing in DTI models. Methods: CPNPs were evaluated for particle size, biocompatibility, in vitro drug release and their effect on in vivo wound healing. Results : The results of in vivo wound closure analysis revealed that CPNP treatments significantly improved wound contraction rates (p<0.01) at a faster rate than other three treatment groups. H&E staining revealed that CPNP treatments resulted in complete epithelialization and thick granulation tissue formation, whereas control groups resulted in a lack of compact epithelialization and persistence of inflammatory cells within the wound sites. Quantitative real-time PCR analysis showed that treatment with CPNPs suppressed IL-6 and TNF-α mRNA expression, and up-regulated TGF-β, VEGF-A and IL-10 mRNA expression. Western blot analysis showed up-regulated protein expression of TGF-β, VEGF-A and phosphorylatedSTAT3. Conclusion: Our results showed that CPNPs enhanced wound healing in DTI models, through modulation of the JAK2/STAT3 signalling pathway and subsequent upregulation of pro-healing factors.


Sign in / Sign up

Export Citation Format

Share Document