Chloroquine attenuates lipopolysaccharide-induced inflammatory responses through upregulation of USP25

2017 ◽  
Vol 95 (5) ◽  
pp. 481-491 ◽  
Author(s):  
Changyu Ding ◽  
Fangfang Li ◽  
Yupeng Long ◽  
Jiang Zheng

Lipopolysaccharide (LPS) is a key pathogenic factor in sepsis, and its recognition by toll-like receptor 4 (TLR4) can activate two district signaling pathways, leading to activation of transcription factors including NF-κB and interferon regulatory factor 3 (IRF3). Chloroquine (CQ) has been shown to affect LPS–TLR4 colocalization and inhibit both MyD88-dependent and TRAM/TRIF-dependent pathways, though the mechanism involved is still poorly understood. Here, we found that the ubiquitin–proteasome system might be involved in this process. CQ increased USP25, a deubiquitinating enzyme, as well as mRNA and protein expression in a dose-dependent manner, which might to some degree be involved in CQ attenuation of LPS-induced macrophage activation. Overexpression of USP25 decreased LPS-induced inflammatory cytokines like TNF-α, IL-6, and IFN-β, while specific siRNA-mediated USP25 silencing increased TNF-α, IL-6, and IFN-β production and secretion. In addition, USP25 deletion strengthened mitogen-activated protein kinase (MAPKs) phosphorylation and IκB degradation. Moreover, USP25 interference increased NF-κB and IRF3 nuclear translocation. Taken together, our data demonstrated a new possible regulator of LPS-induced macrophage activation mediated by CQ, through upregulation of USP25.

2013 ◽  
Vol 91 (2) ◽  
pp. 141-148 ◽  
Author(s):  
Ji-Youn Lim ◽  
Donggeun Sul ◽  
Bang Yeon Hwang ◽  
Kwang Woo Hwang ◽  
Ki-Yeol Yoo ◽  
...  

Microglia are a type of resident macrophage that functions as an inflammation modulator in the central nervous system. Over-activation of microglia by a range of stimuli disrupts the physiological homeostasis of the brain, and induces inflammatory response and degenerative processes, such as those implicated in neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Therefore, we investigated the possible anti-inflammatory mechanisms of inflexanin B in murine microglial BV2 cells. Lipopolysaccharide (LPS) activated BV2 cells and induced the production of pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PGE2), and cytokines (interleukins-1β and -6, and tumour necrosis factor α). The LPS-induced production of pro-inflammatory mediators was associated with the enhancement of nuclear factor-kappaB (NF-κB) nuclear translocation and the activation of mitogen-activated protein kinase (MAPK) including ERK1/2 and JNK. Conversely, pretreatment of cells with inflexanin B (10 and 20 μg/mL) significantly reduced the production of pro-inflammatory mediators. This was accompanied with the reduced nuclear translocation of NF-κB and reduced activation of MAPKs. These results suggest that inflexanin B attenuated the LPS-induced inflammatory process by inhibiting the activation of NF-κB and MAPKs.


2004 ◽  
Vol 199 (11) ◽  
pp. 1545-1557 ◽  
Author(s):  
Francesca Bernassola ◽  
Paolo Salomoni ◽  
Andrew Oberst ◽  
Charles J. Di Como ◽  
Michele Pagano ◽  
...  

p73 has been identified recently as a structural and functional homologue of the tumor suppressor p53. Here, we report that p73 stability is directly regulated by the ubiquitin–proteasome pathway. Furthermore, we show that the promyelocytic leukemia (PML) protein modulates p73 half-life by inhibiting its degradation in a PML–nuclear body (NB)–dependent manner. p38 mitogen-activated protein kinase–mediated phosphorylation of p73 is required for p73 recruitment into the PML-NB and subsequent PML-dependent p73 stabilization. We find that p300-mediated acetylation of p73 protects it against ubiquitinylation and that PML regulates p73 stability by positively modulating its acetylation levels. As a result, PML potentiates p73 transcriptional and proapoptotic activities that are markedly impaired in Pml−/− primary cells. Our findings demonstrate that PML plays a crucial role in modulating p73 function, thus providing further insights on the molecular network for tumor suppression.


2021 ◽  
Author(s):  
Ken Shirato ◽  
Jun Takanari ◽  
Takako Kizaki

Excessive host inflammation following infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated with severity and mortality in coronavirus disease 2019 (COVID-19). We recently reported that the SARS-CoV-2 spike protein S1 subunit (S1) induces pro-inflammatory responses by activating toll-like receptor 4 (TLR4) signaling in macrophages. ETAS®50, a standardized extract of Asparagus officinalis stem, is a unique functional food that elicits anti-photoaging effects by suppressing pro-inflammatory signaling in hydrogen peroxide- and ultraviolet B-exposed skin fibroblasts. To elucidate its potential in preventing excessive inflammation in COVID-19, we examined the effects of ETAS®50 on pro-inflammatory responses in S1-stimulated murine peritoneal exudate macrophages. Co-treatment of the cells with ETAS®50 significantly attenuated S1-induced secretion of interleukin (IL)-6 in a concentration-dependent manner without reducing cell viability. ETAS®50 also markedly suppressed the S1-induced transcription of IL-6 and IL-1β. However, among the TLR4 signaling proteins, ETAS®50 did not affect the degradation of inhibitor κBα, nuclear translocation of nuclear factor-κB p65 subunit, and phosphorylation of c-Jun N-terminal kinase p54 subunit after S1 exposure. In contrast, ETAS®50 significantly suppressed S1-induced phosphorylation of p44/42 mitogen-activated protein kinase (MAPK) and Akt. Attenuation of S1-induced transcription of IL-6 and IL-1β by the MAPK kinase inhibitor U0126 was greater than that by the Akt inhibitor perifosine, and the effects were potentiated by simultaneous treatment with both inhibitors. These results suggest that ETAS®50 attenuates S1-induced IL-6 and IL-1β production by suppressing p44/42 MAPK and Akt signaling in macrophages. Therefore, ETAS®50 may be beneficial in regulating excessive inflammation in patients with COVID-19.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6189
Author(s):  
Ken Shirato ◽  
Jun Takanari ◽  
Takako Kizaki

Excessive host inflammation following infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated with severity and mortality in coronavirus disease 2019 (COVID-19). We recently reported that the SARS-CoV-2 spike protein S1 subunit (S1) induces pro-inflammatory responses by activating toll-like receptor 4 (TLR4) signaling in macrophages. A standardized extract of Asparagus officinalis stem (EAS) is a unique functional food that elicits anti-photoaging effects by suppressing pro-inflammatory signaling in hydrogen peroxide and ultraviolet B-exposed skin fibroblasts. To elucidate its potential in preventing excessive inflammation in COVID-19, we examined the effects of EAS on pro-inflammatory responses in S1-stimulated macrophages. Murine peritoneal exudate macrophages were co-treated with EAS and S1. Concentrations and mRNA levels of pro-inflammatory cytokines were assessed using enzyme-linked immunosorbent assay and reverse transcription and real-time polymerase chain reaction, respectively. Expression and phosphorylation levels of signaling proteins were analyzed using western blotting and fluorescence immunomicroscopy. EAS significantly attenuated S1-induced secretion of interleukin (IL)-6 in a concentration-dependent manner without reducing cell viability. EAS also markedly suppressed the S1-induced transcription of IL-6 and IL-1β. However, among the TLR4 signaling proteins, EAS did not affect the degradation of inhibitor κBα, nuclear translocation of nuclear factor-κB p65 subunit, and phosphorylation of c-Jun N-terminal kinase p54 subunit after S1 exposure. In contrast, EAS significantly suppressed S1-induced phosphorylation of p44/42 mitogen-activated protein kinase (MAPK) and Akt. Attenuation of S1-induced transcription of IL-6 and IL-1β by the MAPK kinase inhibitor U0126 was greater than that by the Akt inhibitor perifosine, and the effects were potentiated by simultaneous treatment with both inhibitors. These results suggest that EAS attenuates S1-induced IL-6 and IL-1β production by suppressing p44/42 MAPK and Akt signaling in macrophages. Therefore, EAS may be beneficial in regulating excessive inflammation in patients with COVID-19.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaochen Chen ◽  
Haofeng Lin ◽  
Jinyang Chen ◽  
Lisheng Wu ◽  
Junqing Zhu ◽  
...  

Activated fibroblast-like synoviocytes (FLSs) play a crucial role in the pathogenesis and progression of rheumatoid arthritis (RA). It is urgent to develop new drugs that can effectively inhibit the abnormal activation of RA-FLS. In our study, the RA-FLS cell line, MH7A, and mice with collagen-induced arthritis (CIA) were used to evaluate the effect of paclitaxel (PTX). Based on the results, PTX inhibited the migration of RA-FLS in a dose-dependent manner and significantly reduced the spontaneous expression of IL-6, IL-8, and RANKL mRNA and TNF-α-induced transcription of the IL-1β, IL-8, MMP-8, and MMP-9 genes. However, PTX had no significant effect on apoptosis in RA-FLS. Mechanistic studies revealed that PTX significantly inhibited the TNF-α-induced phosphorylation of ERK1/2 and JNK in the mitogen-activated protein kinase (MAPK) pathway and suppressed the TNF-α-induced activation of AKT, p70S6K, 4EBP1, and HIF-1α in the AKT/mTOR pathway. Moreover, PTX alleviated synovitis and bone destruction in CIA mice. In conclusion, PTX inhibits the migration and inflammatory mediator production of RA-FLS by targeting the MAPK and AKT/mTOR signaling pathways, which provides an experimental basis for the potential application in the treatment of RA.


2019 ◽  
Vol 317 (6) ◽  
pp. C1161-C1171
Author(s):  
Archita Das ◽  
Varadarajan Sudhahar ◽  
Masuko Ushio-Fukai ◽  
Tohru Fukai

NADPH oxidase (NOX)-derived reactive oxygen species (ROS) and copper (Cu), an essential micronutrient, have been implicated in vascular inflammatory diseases. We reported that in proinflammatory cytokine TNF-α-stimulated endothelial cells (ECs), cytosolic Cu chaperone antioxidant-1 (Atox1) functions as a Cu-dependent transcription factor for the NOX organizer p47phox, thereby increasing ROS-dependent inflammatory gene expression. However, the role and mechanism of Atox1 nuclear translocation in inflamed ECs remain unclear. Using enface staining and nuclear fractionation, here we show that Atox1 was localized in the nucleus in inflamed aortas from ApoE−/− mice with angiotensin II infusion on a high-fat diet, while it was found in cytosol in those from control mice. In cultured human ECs, TNF-α stimulation promoted Atox1 nuclear translocation within 15 min, which was associated with Atox1 binding to TNF-α receptor-associated factor 4 (TRAF4) in a Cu-dependent manner. TRAF4 depletion by siRNA significantly inhibited Atox1 nuclear translocation, p47phox expression, and ROS production as well as its downstream VCAM1/ICAM1 expression and monocyte adhesion to inflamed ECs, which were rescued by overexpression of nuclear targeted Atox1. Furthermore, Atox1 colocalized with TRAF4 at the nucleus in TNF-α-stimulated inflamed ECs and vessels. In summary, Cu-dependent Atox1 binding to TRAF4 plays an important role in Atox1 nuclear translocation and ROS-dependent inflammatory responses in TNF-α-stimulated ECs. Thus the Atox1-TRAF4 axis is a novel therapeutic target for vascular inflammatory disease such as atherosclerosis.


Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 742
Author(s):  
Mariangela De Robertis ◽  
Angelo Sarra ◽  
Valentina D’Oria ◽  
Francesco Mura ◽  
Federico Bordi ◽  
...  

Exosome-like nanoparticles (ELNs) are attracting interest as important vehicles of intercellular communication, both in prokaryotes and eukaryotes. Recently, dietary nanoparticles similar to mammalian exosomes have attracted attention for these features. In particular they appear to be relevant in the modulation of several cellular processes as well as candidate carriers of bioactive molecules (proteins, lipids, and nucleic acids, including miRNAs) with therapeutic value. Herein, we investigated the cellular uptake of blueberry-derived ELNs (B-ELNs) by a human stabilized endothelial cell line (EA.hy926) and the ability of B-ELNs to modulate the expression of inflammatory genes as the response of tumor necrosis factor-α (TNF-α). Our results indicate that 1) EA.hy926 cells internalize B-ELNs in a dose-dependent manner; 2) pretreatment with B-ELNs counters TNF-α-induced reactive oxygen species (ROS) generation and loss of cell viability and modulates the differential expression of 29 genes (fold change > 1.5) induced by TNF-α compared to control; 3) pathway analysis reveals their involvement in a total of 340 canonical pathways, 121 KEGG pathways, and 121 GO Biological processes; and 4) the intersection between differentially expressed (DE) genes and miRNAs contained in B-ELNs unveils a set of candidate target genes, such as prostaglandin I2 synthase (PTGIS), mitogen-activated protein kinase 14 (MAPK14), and phosphodiesterase 7A (PDE7A), for ELNs-contained cargo. In conclusion, our study indicates that B-ELNs can be considered candidate therapeutic carriers of bioactive compounds potentially able to protect vascular system against various stressors.


2019 ◽  
Vol 39 (9) ◽  
Author(s):  
Nanwen Zhang ◽  
Zhiwei Liu ◽  
Hongbin Luo ◽  
Weifang Wu ◽  
Kaimei Nie ◽  
...  

Abstract Background: Rheumatoid arthritis (RA) is a chronic articular synovial inflammatory disease. The precise etiology underlying the pathogenesis of RA remains unknown. We aimed to investigate the inhibitory effect of curcumin analog FM0807 (curcumin salicylate monoester, 2-hydroxy-, 4-[(1E,6E)-7-(4-hydroxy-3-methoxyphenyl)-3,5-dioxo-1,6-heptadien-1-yl]-2-methoxyphenyl ester) on experimental RA and investigate its possible mechanisms of action. Method: Rats with Freund’s complete adjuvant (FCA)-induced arthritis (AIA) were administered aspirin (0.1 mmol.kg−1), curcumin (0.1 mmol.kg−1), FM0807 (0.1, 0.2 mmol.kg−1) and vehicle via gastric gavage, from days 7 to 21, once daily. The hind paw volume and arthritis index (AI) were measured, and radiographic and histological examinations were performed. Twenty-one days later, the animals were killed and left ankle joints were removed to measure protein expression of the elements of the nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathway by Western blot analysis. The enzyme-linked immunosorbent assay (ELISA) was employed to measure synovial fluid levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1β and IL-10. Results: Compared with AIA group, FM0807 reduced the AI and swelling of the injected hind paw in a dose-dependent manner, and inhibited increases in inflammatory cell infiltration, pannus formation and cartilage destruction. FM0807 also potently attenuated the increase in the expression of inflammatory factors TNF-α, IL-6 and IL-1β in synovial fluid, while IL-10 levels were also elevated. FM0807 significantly suppressed phosphorylation of extracellular-signal-regulated kinase (ERK) 1/2 (ERK1/2), c-Jun-N-terminal kinase (JNK) 1/2 (JNK1/2), p38MAPK, inhibitor of NF-κB kinase (IKK), IκB and NF-κB p65 protein, (all P<0.05), which displayed more potential effects compared with those of the aspirin and curcumin groups. Conclusion: FM0807 exerts its therapeutic effects on RA by inhibiting cartilage degeneration. FM0807 treatment might be an effective therapeutic approach for RA.


Blood ◽  
2007 ◽  
Vol 110 (1) ◽  
pp. 228-236 ◽  
Author(s):  
Xinhua Zhang ◽  
Yuko Kimura ◽  
Chongyun Fang ◽  
Lin Zhou ◽  
Georgia Sfyroera ◽  
...  

Toll-like receptors (TLRs) and complement are 2 components of innate immunity that are critical for first-line host defense and elicitation of adaptive immune responses. Many pathogen-associated molecular patterns activate both TLR and complement, but whether and how these 2 systems, when coactivated in vivo, interact with each other has not been well studied. We demonstrate here a widespread regulation of TLR signaling by complement in vivo. The TLR ligands lipopolysacharride (TLR4), zymosan (TLR2/6), and CpG oligonucleotide (TLR9) caused, in a complement-dependent manner, strikingly elevated plasma interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), and IL-1β, and/or decreased plasma IL-12 levels in mice deficient in the membrane complement inhibitor decay-accelerating factor (DAF). A similar outcome was observed in wild-type mice cotreated with the TLR ligands and cobra venom factor, a potent complement activator. The regulatory effect of complement on TLR-induced cytokine production in vivo was mediated by the anaphylatoxin receptors C5aR and C3aR. Additionally, changes in lipopolysaccharide (LPS)–induced cytokine production in DAF-deficient mice correlated with increased mitogen-activated protein kinase and nuclear factor-κB activation in the spleen. These results reveal a strong interaction between complement and TLR signaling in vivo and suggest a novel mechanism by which complement promotes inflammation and modulates adaptive immunity.


2001 ◽  
Vol 281 (4) ◽  
pp. C1096-C1105 ◽  
Author(s):  
Tadayuki Oshima ◽  
Kevin P. Pavlick ◽  
F. Stephen Laroux ◽  
S. Kris Verma ◽  
Paul Jordan ◽  
...  

Mucosal addressin cell adhesion molecule-1 (MAdCAM-1) is a 60-kDa endothelial cell adhesion glycoprotein that regulates lymphocyte trafficking to Peyer's patches and lymph nodes. Although it is widely agreed that MAdCAM-1 induction is involved in chronic gut inflammation, few studies have investigated regulation of MAdCAM-1 expression. We used two endothelial lines [bEND.3 (brain) and SVEC (high endothelium)] to study the signal paths that regulate MAdCAM-1 expression in response to tumor necrosis factor (TNF)-α using RT-PCR, blotting, adhesion, and immunofluorescence. TNF-α induced both MAdCAM-1 mRNA and protein in a dose- and time-dependent manner. This induction was tyrosine kinase (TK), p42/44, p38 mitogen-activated protein kinase (MAPK), and nuclear factor (NF)-κB/poly-ADP ribose polymerase (PARP) dependent. Because MAdCAM-1 is regulated via MAPKs, we examined mitogen/extracellular signal-regulated kinase (MEK)-1/2 activation in SVEC. We found that MEK-1/2 is activated by TNF-α within minutes and is dependent on TK and p42/44 MAPKs. Similarly, TNF-α activated NF-κB through TK, p42/44, p38 MAPKs, and PARP pathways in SVEC cells. MAdCAM-1 was also shown to be frequently distributed to endothelial junctions both in vitro and in vivo. Cytokines like TNF-α stimulate MAdCAM-1 in high endothelium via TK, p38, p42/22 MAPKs, and NF-κB/PARP. MAdCAM-1 expression requires NF-κB translocation through both direct p42/44 and indirect p38 MAPK pathways in high endothelial cells.


Sign in / Sign up

Export Citation Format

Share Document