Geochemistry and age of Timiskaming alkali volcanics and the Otto syenite stock, Abitibi, Ontario

1990 ◽  
Vol 27 (10) ◽  
pp. 1304-1311 ◽  
Author(s):  
D. Ben Othman ◽  
N. T. Arndt ◽  
W. M. White ◽  
K. P. Jochum

Tephrites and trachytes of the Timiskaming volcanics from the Kirkland Lake area (Ontario) and syenites and a granite from the nearby Otto Stock are characterized by extreme enrichment of incompatible elements coupled with relative depletion of Nb, Ti, and to a lesser extent Zr and Y.The volcanic rocks have a whole-rock Sm–Nd isochron age of 2740 ± 117 Ma (2σ error), and minerals separated from the Otto Stock, a Sm–Nd age of 2544 ± 50 Ma. Conventional and ion probe U–Pb analyses of zircons from the Otto Stock yielded an upper intercept age of 2700 ± 19 Ma, whereas the more concordant ion probe analyses had a mean 207Pb/206Pb age of 2671 ± 8 Ma (2σ). The latter is interpreted as the age of emplacement of both the volcanics and the pluton, and the Sm–Nd mineral isochron age is thought to reflect a period of later disturbance, probably during regional metamorphism.A high initial εNd of 2.5 ± 1.5 for Kirkland Lake volcanics indicates long-term isotopic depletion of their source. This value is the same as that for volcanic rocks throughout the Abitibi belt and indicates that any chemically enriched material in the source cannot have been much older than the volcanics themselves. An environment remote from older continents is inferred.


2003 ◽  
Vol 40 (6) ◽  
pp. 833-852 ◽  
Author(s):  
M Tardy ◽  
H Lapierre ◽  
D Bosch ◽  
A Cadoux ◽  
A Narros ◽  
...  

The Slide Mountain Terrane consists of Devonian to Permian siliceous and detrital sediments in which are interbedded basalts and dolerites. Locally, ultramafic cumulates intrude these sediments. The Slide Mountain Terrane is considered to represent a back-arc basin related to the Quesnellia Paleozoic arc-terrane. However, the Slide Mountain mafic volcanic rocks exposed in central British Colombia do not exhibit features of back-arc basin basalts (BABB) but those of mid-oceanic ridge (MORB) and oceanic island (OIB) basalts. The N-MORB-type volcanic rocks are characterized by light rare-earth element (LREE)-depleted patterns, La/Nb ratios ranging between 1 and 2. Moreover, their Nd and Pb isotopic compositions suggest that they derived from a depleted mantle source. The within-plate basalts differ from those of MORB affinity by LREE-enriched patterns; higher TiO2, Nb, Ta, and Th abundances; lower εNd values; and correlatively higher isotopic Pb ratios. The Nd and Pb isotopic compositions of the ultramafic cumulates are similar to those of MORB-type volcanic rocks. The correlations between εNd and incompatible elements suggest that part of the Slide Mountain volcanic rocks derive from the mixing of two mantle sources: a depleted N-MORB type and an enriched OIB type. This indicates that some volcanic rocks of the Slide Mountain basin likely developed from a ridge-centered or near-ridge hotspot. The activity of this hotspot is probably related to the worldwide important mantle plume activity that occurred at the end of Permian times, notably in Siberia.



1984 ◽  
Vol 21 (6) ◽  
pp. 731-736 ◽  
Author(s):  
Nathan L. Green ◽  
Paul Henderson

A suite of hy-normative hawaiites, ne-normative mugearite, and calc-alkaline andesitic rocks from the Garibaldi Lake area exhibits fractionated, slightly concave-upward REE patterns (CeN/YbN = 4.5–15), heavy REE contents about 5–10 times the chondritic abundances, and no Eu anomalies. It is unlikely that the REE patterns provide information concerning partial melting conditions beneath southwestern British Columbia because they have probably been modified substantially by upper crustal processes including crustal contamination and (or) crystal fractionation. The REE contents of the Garibaldi Lake lavas are not incompatible with previous interpretations that (1) the hawaiites have undergone considerable fractionation of olivine, plagioclase, and clinopyroxene; and (2) the individual andesitic suites were derived from separate batches of chemically distinct magma that evolved along different high-level crystallization trends. In general, however, the andesites are characterized by lower light REE contents than the basaltic andesites. These differences in LREE abundances may reflect different amounts of LREE-rich accessory phases, such as apatite, sphene, or allanite, assimilated from the underlying quartz diorites.



2010 ◽  
Vol 14 (3) ◽  
pp. 481-489 ◽  
Author(s):  
J. Liu ◽  
S. Kang ◽  
T. Gong ◽  
A. Lu

Abstract. This study analyzed satellite images and long term climate variables from a high-elevation meteorological station (4730 m) and streamflow records to examine hydrological response of Nam Co Lake (4718 m), the largest lake on the Tibetan Plateau, over the last 50 years. The results show the lake area extended by 51.8 km2 (2.7% of the total area) when compared with the area in 1976. This change is associated with an annual precipitation increase of 65 mm (18.6%), annual and winter mean temperature increases of 0.9 °C and 2.1 °C respectively, an annual runoff increase of 20% and an annual pan evaporation decrease of about 2%, during the past 20 years. The year of the change point in annual precipitation, air temperature, annual pan evaporation and runoff occurred in 1971, 1983, 1997 and 1997, respectively. The timing of the lake growth corresponds with the abrupt increase in annual precipitation and runoff since the mid-1990s.



2007 ◽  
Vol 14 (3) ◽  
pp. 237-246 ◽  
Author(s):  
D. Xu ◽  
Q. Cheng ◽  
F. Agterberg

Abstract. Quantification of granite textures and structures using a mathematical model for characterization of granites has been a long-term attempt of mathematical geologists over the past four decades. It is usually difficult to determine the influence of magma properties on mineral crystallization forming fined-grained granites due to its irregular and fine-grained textures. The ideal granite model was originally developed for modeling mineral sequences from first and second-order Markov properties. This paper proposes a new model for quantifying scale invariance properties of mineral clusters and voids observed within mineral sequences. Sequences of the minerals plagioclase, quartz and orthoclase observed under the microscope for 104 aplite samples collected from the Meech Lake area, Gatineau Park, Québec were used for validation of the model. The results show that the multi-scale approaches proposed in this paper may enable quantification of the nature of the randomness of mineral grain distributions. This, in turn, may be related to original properties of the magma.



An attempt is made to fit available petrochemical data on oceanic volcanic rocks into the structural model for the ocean basins presented by the plate tectonic theory. It is suggested that there are three major volcanic regimes: (i) the low-potassic olivine tholeiite association of the axial zones of the oceanic ridges where magmatic liquids are generated at low pressures high in the mantle, (ii) the alkalic (Na > K) associations along linear fractures where liquids generated at greater depth gain easy egress to the surface, (iii) those alkalic associations, rich in incompatible elements, of island groups, remote from fracture zones, where magmas created at depth proceed slowly to the surface and in consequence suffer intense fractionation. There are certain discrepancies in this pattern, notably that there is no apparent relation between rate of sea-floor spreading and degree of over-saturation of the axial zone basalts and that certain areas, such as Iceland, are characterized by excess volcanism. Explanation of these anomalies is sought by examining an oceanic area in an early stage of development—the Red Sea. It is tentatively suggested that the initial split of a contiguous continent might be brought about by the linking of profound fractures, caused by domal uplift related to rising isolated lithothermal systems, and that the present anomalies in oceanic volcanism may reflect the variation in rate of thermal convection within the original isolated lithothermal plumes.





2009 ◽  
Vol 13 (11) ◽  
pp. 2023-2030 ◽  
Author(s):  
M. Li ◽  
Y. Ma ◽  
Z. Hu ◽  
H. Ishikawa ◽  
Y. Oku

Abstract. The mesoscale snow distribution over the Namco lake area of the Tibetan Plateau on October 2005 has been investigated in this paper. The base and revised experiments were conducted using the Weather Research Model (WRF) with three nested grids that included a 1 km finest grid centered on the Namco station. Our simulation ran from 6 October through to 10 October 2005, which was concurrent with long term meteorological observations. Evaluation against boundary layer meteorological tower measurements and flux observations showed that the model captured the observed 2 m temperature and 10 m winds reasonably well in the revised experiment. The results suggest that output snow depth maximum amounts from two simulated experiments were centered downwind of the Namco lakeshore. Modified surface state variable, for example, surface skin temperature on the lake help to increase simulated credibility.



1999 ◽  
Vol 36 (2) ◽  
pp. 293-312 ◽  
Author(s):  
Kevin M Ansdell ◽  
Karen A Connors ◽  
Richard A Stern ◽  
Stephen B Lucas

Lithological and structural mapping in the east Wekusko Lake area of the Flin Flon Belt, Trans-Hudson Orogen, suggested an intimate relationship between magmatism, fluvial sedimentation, and initiation of fold and thrust belt deformation. Conventional U-Pb geochronology of volcanic rocks in fault-bounded assemblages provides a minimum age of 1876 ± 2 Ma for McCafferty Liftover back-arc basalts, and ages of between 1833 and 1836 Ma for the Herb Lake volcanic rocks. A rhyolite which unconformably overlies Western Missi Group fluvial sedimentary rocks has complex zircon systematics. This rock may be as old as about 1856 Ma or as young as 1830 Ma. The sedimentary rocks overlying this rhyolite are locally intercalated with 1834 Ma felsic volcanic rocks, and yield sensitive high resolution ion microprobe (SHRIMP) U-Pb and Pb-evaporation detrital zircon ages ranging from 1834 to 2004 Ma. The Eastern Missi Group is cut by an 1826 ± 4 Ma felsic dyke, and contains 1832-1911 Ma detrital zircons. The dominant source for detritus in the Missi Group was the Flin Flon accretionary collage and associated successor arc rocks. The fluvial sedimentary rocks and the Herb Lake volcanic rocks were essentially coeval, and were then incorporated into a southwest-directed fold and thrust belt which was initiated at about 1840 Ma and active until at least peak regional metamorphism.



1989 ◽  
Vol 26 (6) ◽  
pp. 1282-1296 ◽  
Author(s):  
J. Dostal ◽  
R. A. Wilson ◽  
J. D. Keppie

Siluro-Devonian volcanic rocks of the northwestern mainland Appalachians are found mainly in the Tobique belt of New Brunswick where they consist predominantly of bimodal mafic–felsic suites erupted in a continental-rift environment. The axis of the Tobique rift trends north-northeast – south-southwest, obliquely to the regional northeast–southwest trend of the Appalachians. These geometric relationships are interpreted as being the result of rifting in a sinistral shear regime produced during emplacement of the Avalon terrene. The basaltic rocks are continental tholeiites and transitional basalts derived from a heterogeneous upper-mantle source that was enriched in incompatible elements relative to the primordial mantle. The mantle source was probably affected by the subduction processes.



1988 ◽  
Vol 25 (2) ◽  
pp. 280-291 ◽  
Author(s):  
D. A. Groves ◽  
R. L. Morton ◽  
J. M. Franklin

Subaerial and shallow subaqueous mafic hyalotuffs, lava flows, and flow breccias, felsic lava flows, and pyroclastic flows and falls form a 2 km thick succession beneath the Mattabi massive sulphide deposit. The lowermost 800 m of section comprises massive to amygdaloidal mafic flows and flow breccias interlayered with repetitive sequences of thinly bedded felsic tuff: pillow lavas and hyaloclastites are absent. Amygdaloidal felsic lavas overlie the mafic flows and are locally capped by coarse explosion breccia. This breccia is believed to represent the start of mafic hydrovolcanism, which produced ash falls, surges, and flows. These pyroclastic deposits formed thin- to thick-bedded hyalotuffs that contain highly vesicular and quenched juvenile and accessory lithic fragments. Periods of water influx probably led to the construction of a tuff cone, which represents a submergent hydrovolcanic cycle.In the Mattabi area, pyroclastic flow deposits form the immediate mine footwall strata and include (i) massive basal beds and overlying bedded ash tuffs and (ii) massive pumiceous units. These deposits overlie and, to the west in the Darkwater Lake area, are intercalated with the mafic hyalotuff sequence. The morphology of the footwall volcanic rocks indicates that the Mattabi and the F-zone massive sulphide deposits formed in a shallow subaqueous environment.



Sign in / Sign up

Export Citation Format

Share Document