Temperature as a Proximate Factor in Orientation Behavior

1977 ◽  
Vol 34 (5) ◽  
pp. 734-739 ◽  
Author(s):  
William W. Reynolds

Temperature serves as a proximate factor (cue, guidepost, sign stimulus, or directive factor) affecting locomotor responses of fishes. Although temperature can also serve as an ultimate ecological factor, as in behavioral thermoregulation, nonthermal factors may in some cases provide the ultimate adaptive or ecological value of a temperature response; some examples are habitat selection, intraspecific size segregation, interspecific niche differentiation, isolating mechanisms, predator avoidance, prey location, escape reactions, and migrations (thermoperiodic, diel, seasonal, spawning). Conversely, nonthermal variables such as light intensity or water depth may act as accessory proximate factors in thermoregulation. In spawning migrations, thermal requirements of eggs and larvae may take precedence over the (often different) preferenda or optima of adults. Although thermal responses of fishes are largely innate and species specific, ontogenetic and other changes can occur. Since temperature can serve as an unconditioned reinforcer in operant conditioning, thermal responses are not limited to simple kineses or taxes. Nonthermal factors such as photoperiod, circadian rhythms, currents, social and biotic interactions, stresses, infections, or chemicals can affect thermal responses, and may account for some lack of conformity between laboratory preferenda and field distributions and behaviors. Key words: thermoregulation, orientation, preferendum, selection, preference, avoidance, behavior, temperature, fish, responses

Hydrobiologia ◽  
2021 ◽  
Author(s):  
Márk Ficsór ◽  
Zoltán Csabai

AbstractThe aim of this review is to summarize the literature knowledge about how abiotic environmental factors and biotic interactions affect the sequentially overlapping longitudinal distribution of Central European species of the net-spinning freshwater caddisfly larvae of the genus Hydropsyche (Trichoptera: Hydropsychidae). In this relation, several physical and chemical parameters of water are discussed, as well as different species-specific traits, behavioural aspects and the interaction of coexisting species. Longitudinal gradients of river networks, especially annual temperature range, flow velocity and the particle size of suspended food material play a crucial role in forming the downstream succession of characteristic species, while increased levels of organic pollution, nutrients, salinity and heavy metals facilitates the presence of more tolerant ones. Several species-specific traits, such as respiration range, net-building frequency, head capsule size or optimal net-building velocity correlate with the position of a given species in the sequence. Coexistence of species with similar ecological demands in the overlapping zones of distribution is facilitated by differences in feeding and net-building habits, microhabitat preferences and staggering life cycles, but complicated at the same time by means of inter- and intraspecific territorial behaviour, such as fighting for the ownership of larval retreats or the practice of stridulation.


Alpine Botany ◽  
2021 ◽  
Author(s):  
Maria Vorkauf ◽  
Ansgar Kahmen ◽  
Christian Körner ◽  
Erika Hiltbrunner

AbstractAlpine plants complete their seasonal phenological cycle during two to three snow-free months. Under climate change, snowmelt advances and the risk of summer droughts increases. Yet, photoperiodism may prevent alpine plants from benefiting from an earlier start of the growing season. To identify the drivers of flowering phenology in the seven main species of an alpine grassland, we experimentally shifted the snowmelt date through snow manipulations, and excluded precipitation during summer. With “time-to-event” models, we analysed the beginning of main flowering with respect to temperature sums, time after snowmelt, and calendar day (photoperiod). We identified two phenology types: four species tracking snowmelt dates directly or with a certain lag set by temperature sums, including the dominant sedge Carex curvula, Anthoxanthum alpinum Helictotrichon versicolor, and Trifolium alpinum, and three species tracking photoperiod: Geum montanum, Leontodon helveticus and Potentilla aurea. Photoperiodism did not act as daylength threshold but rather modulated the thermal sums at flowering. Hence, photoperiod delayed flowering after earlier snowmelt. The grass A. alpinum was the only one of seven species that clearly responded to drought by earlier and longer flowering. The remarkably high importance of snowmelt dates for both phenology types suggests an earlier onset of flowering in a warmer climate, particularly for non-photoperiod-sensitive species, with an increasing risk for freezing damages and potential disruptions of biotic interactions in the most frequent type of alpine grassland across the Alps. Consequentially, the distinct microclimate and species-specific responses to photoperiod challenge temperature-only based projections of climate warming effects on alpine plant species.


2020 ◽  
Vol 96 (5) ◽  
Author(s):  
Jonas J Lembrechts ◽  
L Broeders ◽  
J De Gruyter ◽  
D Radujković ◽  
I Ramirez-Rojas ◽  
...  

ABSTRACT Creating accurate habitat suitability and distribution models (HSDMs) for soil microbiota is far more challenging than for aboveground organism groups. In this perspective paper, we propose a conceptual framework that addresses several of the critical issues holding back further applications. Most importantly, we tackle the mismatch between the broadscale, long-term averages of environmental variables traditionally used, and the environment as experienced by soil microbiota themselves. We suggest using nested sampling designs across environmental gradients and objectively integrating spatially hierarchic heterogeneity as covariates in HSDMs. Second, to incorporate the crucial role of taxa co-occurrence as driver of soil microbial distributions, we promote the use of joint species distribution models, a class of models that jointly analyze multiple species’ distributions, quantifying both species-specific environmental responses (i.e. the environmental niche) and covariance among species (i.e. biotic interactions). Our approach allows incorporating the environmental niche and its associated distribution across multiple spatial scales. The proposed framework facilitates the inclusion of the true relationships between soil organisms and their abiotic and biotic environments in distribution models, which is crucial to improve predictions of soil microbial redistributions as a result of global change.


1987 ◽  
Vol 119 (7-8) ◽  
pp. 653-661 ◽  
Author(s):  
William P. Kemp ◽  
Norma E. Sánchez

AbstractA study was conducted to examine the springtime hatching characteristics of Melanoplus sanguinipes (F.) and Aulocara elliotti (Thomas) eggs on rangeland. Laboratory experiments showed that eggs of M. sanguinipes required fewer accumulated degree days (DD) to complete post-diapause development than those of A. elliotti at a constant temperature of 23.3°C. Springtime field observations revealed that A. elliotti nymphs emerged prior to or concurrent with M. sanguinipes. Additionally, results suggest that A. elliotti nymphs emerge over a shorter interval than M. sanguinipes. Much of the variation in springtime emergence could be attributed to species-specific oviposition sites, pod depth, and pod orientation that resulted in A. elliotti eggs accumulating heat more rapidly than M. sanguinipes eggs. Results help explain some of the variation found in egg hatching of these two grasshopper species on rangeland.


2020 ◽  
Author(s):  
Maxime Dubart ◽  
Patrice David ◽  
Frida Ben-Ami ◽  
Christoph R. Haag ◽  
V. Ilmari Pajunen ◽  
...  

AbstractNiche partitioning is the most studied factor structuring communities of competing species. In fragmented landscapes, however, a paradox can exist: different taxa may competitively dominate different types of habitat patches, resulting in a form of spatial niche partitioning, yet differences in long-term distributions among species can appear surprisingly small. This paradox is illustrated by an emblematic metacommunity - that of Daphnia spp. in rockpools on the Finnish Baltic coast, where three species compete with each other, have distinct ecological preferences, yet largely overlap in long-term distributions. Here we examine how metacommunity models that explicitly estimate species-specific demographic parameters can solve the apparent paradox. Our research confirms previous studies that local extinction rates are influenced by environmental variables in a strong and species-specific way and are considerably increased by interspecific competition. Yet, our simulations show that this situation exists alongside interspecific differences in realized niches that are, overall, small, and identified three main explanations for this compatibility. Our results illustrate how state-space modelling can clarify complex metacommunity dynamics and explain why local competition and niche differentiation do not always scale up to the landscape level.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Hsiang-Yu Tsai ◽  
Dustin R Rubenstein ◽  
Bo-Fei Chen ◽  
Mark Liu ◽  
Shih-Fan Chan ◽  
...  

Understanding how climate-mediated biotic interactions shape thermal niche width is critical in an era of global change. Yet, most previous work on thermal niches has ignored detailed mechanistic information about the relationship between temperature and organismal performance, which can be described by a thermal performance curve. Here, we develop a model that predicts the width of thermal performance curves will be narrower in the presence of interspecific competitors, causing a species’ optimal breeding temperature to diverge from that of its competitor. We test this prediction in the Asian burying beetle Nicrophorus nepalensis, confirming that the divergence in actual and optimal breeding temperatures is the result of competition with their primary competitor, blowflies. However, we further show that intraspecific cooperation enables beetles to outcompete blowflies by recovering their optimal breeding temperature. Ultimately, linking abiotic factors and biotic interactions on niche width will be critical for understanding species-specific responses to climate change.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jie Yang ◽  
Yanfen Wang ◽  
Xiaoyong Cui ◽  
Kai Xue ◽  
Yiming Zhang ◽  
...  

AbstractThe spatial variability of microorganisms in grasslands can provide important insights regarding the biogeographic patterns of microbial communities. However, information regarding the degree of overlap and partitions of microbial communities across different habitats in grasslands is limited. This study investigated the microbial communities in three distinct habitats from Xilingol steppe grassland, i.e. animal excrement, phyllosphere, and soil samples, by Illumina MiSeq sequencing. All microbial community structures, i.e. for bacteria, archaea, and fungi, were significantly distinguished according to habitat. A high number of unique microorganisms but few coexisting microorganisms were detected, suggesting that the structure of microbial communities was mainly regulated by species selection and niche differentiation. However, the sequences of those limited coexisting microorganisms among the three different habitats accounted for over 60% of the total sequences, indicating their ability to adapt to variable environments. In addition, the biotic interactions among microorganisms based on a co-occurrence network analysis highlighted the importance of Microvirga, Blastococcus, RB41, Nitrospira, and four norank members of bacteria in connecting the different microbiomes. Collectively, the microbial communities in the Xilingol steppe grassland presented strong habitat preferences with a certain degree of dispersal and colonization potential to new habitats along the animal excrement- phyllosphere-soil gradient. This study provides the first detailed comparison of microbial communities in different habitats in a single grassland, and offers new insights into the biogeographic patterns of the microbial assemblages in grasslands.


mSystems ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Flora Vincent ◽  
Chris Bowler

ABSTRACT Diatoms are a major component of phytoplankton, believed to be responsible for around 20% of the annual primary production on Earth. As abundant and ubiquitous organisms, they are known to establish biotic interactions with many other members of plankton. Through analyses of cooccurrence networks derived from the Tara Oceans expedition that take into account both biotic and abiotic factors in shaping the spatial distributions of species, we show that only 13% of diatom pairwise associations are driven by environmental conditions; the vast majority are independent of abiotic factors. In contrast to most other plankton groups, on a global scale, diatoms display a much higher proportion of negative correlations with other organisms, particularly toward potential predators and parasites, suggesting that their biogeography is constrained by top-down pressure. Genus-level analyses indicate that abundant diatoms are not necessarily the most connected and that species-specific abundance distribution patterns lead to negative associations with other organisms. In order to move forward in the biological interpretation of cooccurrence networks, an open-access extensive literature survey of diatom biotic interactions was compiled, of which 18.5% were recovered in the computed network. This result reveals the extent of what likely remains to be discovered in the field of planktonic biotic interactions, even for one of the best-known organismal groups. IMPORTANCE Diatoms are key phytoplankton in the modern ocean that are involved in numerous biotic interactions, ranging from symbiosis to predation and viral infection, which have considerable effects on global biogeochemical cycles. However, despite recent large-scale studies of plankton, we are still lacking a comprehensive picture of the diversity of diatom biotic interactions in the marine microbial community. Through the ecological interpretation of both inferred microbial association networks and available knowledge on diatom interactions compiled in an open-access database, we propose an ecosystems approach for exploring diatom interactions in the ocean.


Author(s):  
Ruben H. Heleno

Abstract Non-native plants change the communities they integrate in multiple ways, including direct and indirect effects on co-occurring native vegetation. While direct effects are more obvious, indirect effects, i.e. those mediated by biotic interactions with other trophic levels, can also have pervasive consequences for long-term community persistence. Seed dispersal is a critical stage during the life cycle of most plants, as it lays the foundations for plant recruitment patterns and long-term vegetation dynamics. By interacting with seed-dispersing animals, primarily frugivorous birds and mammals, plants can positively or negatively affect the dispersal of co-occurring native seeds. In an increasingly invaded world, it is thus critically important to identify general trends on the direction and magnitude of these effects. This chapter reviews the empirical evidence supporting such changes and the potential underlying mechanisms driving them. While the direct impacts of plant invasions are relatively easy to document, indirect effects are much harder to detect. Nevertheless, the most important consequence of the incorporation of new fruiting plants into native communities seems to be a direct competition for the services provided by the local dispersers, negatively affecting native seed dispersal rates. However, another key message emerging from the literature is that responses are highly idiosyncratic, and usually habitat- and species-specific, and therefore resistant to broad generalizations. Fruiting phenology, and in particular the synchrony/asynchrony between the availability of native and non-native fruits, seems to be a particularly important driver of the direction of the responses (i.e. towards facilitation or competition). However, most evidence is still derived from anecdotal observations and formal community level assessments are largely missing. Similarly, how invasive plants change the emergent structure of seed dispersal networks remains uncertain, with early evidence suggesting that novel seed dispersal networks might be structurally very similar to native ones. Bringing together classic experimental designs and new technical and analytical tools to provide broad synthesis will be vital in the near future to clarify the direction, magnitude and generality of these effects.


2012 ◽  
Vol 71 (2) ◽  
pp. 261-277 ◽  
Author(s):  
Ahmad K. Hegazy ◽  
Abdelrahman A. Alatar ◽  
Jon Lovett-Doust ◽  
Hosam A. El-Adawy

AbstractTwenty dominant plant species representing different life forms were investigated phenologically over a period of 36 months (January 2004 to December 2006). Plant populations were sampled at down-, mid-, and upstream sites in a desert wadi ecosystem. The results were analyzed using TWINSPAN, DCA and CCA techniques. Five phenological niches were apparent: (1) species flowering all year round, with peaks in spring and autumn such asOchradenus baccatus; (2) species flowering during winter includingLycium shawiiandTamarix nilotica; (3) species flowering during spring, e.g.,Zillaspinosa, Zygophyllum coccineumandCapparis spinosa; (4) species flowering during summer includingIphiona mucronataandDeverra triradiata; and (5) species flowering during autumn that includeAtriplex halimusand twoAnabasisspecies. The climatic variables, including temperature, rainfall and relative humidity, affect the phenological niches and between-species differences. Within-species variations occurred between years and there were no between-site variations for most study species. The different plant species exhibited phenological diversity along the course of the wadi ecosystem. The phenological niches are species-specific and environmentally dependent rather than local selective pressures.


Sign in / Sign up

Export Citation Format

Share Document