Oligonucleotide fingerprinting reveals various probe-dependent levels of informativeness in chickpea (Cicer arietinum)

Genome ◽  
1992 ◽  
Vol 35 (3) ◽  
pp. 436-442 ◽  
Author(s):  
Kurt Weising ◽  
Dieter Kaemmer ◽  
Franz Weigand ◽  
Jörg T. Epplen ◽  
Gunter Kahl

Synthetic oligonucleotides complementary to simple repetitive DNA sequences were used to detect inter- and intra-specific polymorphisms in a leguminous crop plant (chickpea, Cicer arietinum) and its wild relatives. All the investigated repetitive motifs [(GACA)4, (GATA)4, (GTG)5, (CA)8, (TCC)5, (GGAT)4, and (AGTTT)4] were abundantly present and polymorphic in the chickpea genome. Different probes revealed different levels of variability. Whereas species-specific banding patterns were obtained with the (GTG)5 probe, other probes revealed differences between accessions, or even individuals. The somatic multilocus patterns were stable for all probes.Key words: genetic polymorphism, simple repetitive sequences, DNA fingerprinting, synthetic oligonucleotide probes.

2021 ◽  
Vol 12 ◽  
Author(s):  
Rahman Ebrahimzadegan ◽  
Fatemeh Orooji ◽  
Pengtao Ma ◽  
Ghader Mirzaghaderi

Genomic repetitive sequences commonly show species-specific sequence type, abundance, and distribution patterns, however, their intraspecific characteristics have been poorly described. We quantified the genomic repetitive sequences and performed single nucleotide polymorphism (SNP) analysis between 29 Ae. tauschii genotypes and subspecies using publicly available raw genomic Illumina sequence reads and used fluorescence in situ hybridization (FISH) to experimentally analyze some repeats. The majority of the identified repetitive sequences had similar contents and proportions between anathera, meyeri, and strangulata subspecies. However, two Ty3/gypsy retrotransposons (CL62 and CL87) showed significantly higher abundances, and CL1, CL119, CL213, CL217 tandem repeats, and CL142 retrotransposon (Ty1/copia type) showed significantly lower abundances in subspecies strangulata compared with the subspecies anathera and meyeri. One tandem repeat and 45S ribosomal DNA (45S rDNA) abundances showed a high variation between genotypes but their abundances were not subspecies specific. Phylogenetic analysis using the repeat abundances of the aforementioned clusters placed the strangulata subsp. in a distinct clade but could not discriminate anathera and meyeri. A near complete differentiation of anathera and strangulata subspecies was observed using SNP analysis; however, var. meyeri showed higher genetic diversity. FISH using major tandem repeats couldn’t detect differences between subspecies, although (GAA)10 signal patterns generated two different karyotype groups. Taken together, the different classes of repetitive DNA sequences have differentially accumulated between strangulata and the other two subspecies of Ae. tauschii that is generally in agreement with spike morphology, implying that factors affecting repeatome evolution are variable even among highly closely related lineages.


2019 ◽  
Vol 157 (1-2) ◽  
pp. 53-64 ◽  
Author(s):  
Michael Schmid ◽  
Claus Steinlein ◽  
Alina M. Reiter ◽  
Michail Rovatsos ◽  
Marie Altmanová ◽  
...  

An experimental approach using monoclonal anti-5-methylcytosine antibodies and indirect immunofluorescence was elaborated for detecting 5-methylcytosine-rich chromosome regions in reptilian chromosomes. This technique was applied to conventionally prepared mitotic metaphases of 2 turtle species and 12 squamate species from 8 families. The hypermethylation patterns were compared with C-banding patterns obtained by conventional banding techniques. The hypermethylated DNA sequences are species-specific and are located in constitutive heterochromatin. They are highly reproducible and often found in centromeric, pericentromeric, and interstitial positions of the chromosomes. Heterochromatic regions in differentiated sex chromosomes are particularly hypermethylated.


2016 ◽  
Vol 148 (1) ◽  
pp. 35-43
Author(s):  
Michael Schmid ◽  
Claus Steinlein

An experimental approach using monoclonal anti-5-methylcytosine (5-MeC) antibodies and indirect immunofluorescence was elaborated for detecting 5-MeC-rich chromosome regions in anuran chromosomes. This technique was applied to mitotic metaphases of 6 neotropical frog species belonging to 6 genera and 4 families. The hypermethylation patterns were compared with a variety of banding patterns obtained by conventional banding techniques. The hypermethylated DNA sequences are species-specific and located exclusively in constitutive heterochromatin. They are found in centromeric, pericentromeric, telomeric, and interstitial positions of the chromosomes and adjacent to nucleolus organizer regions. 5-MeC-rich DNA sequences can be embedded both in AT- and GC-rich repetitive DNA. The experimental parameters that have major influence on the reproducibility and quality of the anti-5-MeC antibody labeling are discussed.


Genome ◽  
1995 ◽  
Vol 38 (3) ◽  
pp. 507-515 ◽  
Author(s):  
Andrea Hamann ◽  
Dorothea Zink ◽  
Walter Nagl

The genetic variability of the genus Phaseolus was investigated by nonradioactive DNA fingerprinting. The simple repetitive sequences (GATA)4, (GACA)4, (CAC)5, and (CA)8 were used as probes to differentiate 18 species comprised of 90 genotypes. (GATA)4, (CAC)5, and (CA)8 could be detected in the genome of nearly all species, while the (GACA)4 motif occurred only in 13 species. Almost all fragments that hybridized with (GACA)4 also hybridized with (GATA)4. All but two cultivars of Phaseolus vulgaris, P. lunatus, P. acutifolius, and P. polyanthus showed specific banding patterns with (GATA)4. The other repetitive motifs revealed only limited or no intraspecific variation. In P. vulgaris, two group-specific patterns were found with (GATA)4, giving further evidence for a Middle American and an Andean origin of the P. vulgaris genotypes. The high intraspecific pattern variation that was revealed with (GATA)4 in the predominantly self-pollinating species P. vulgaris and P. lunatus can probably be explained by there being at least two primary centres of domestication and, hence, genetic diversification. In cross-pollinating species (e.g., P. coccineus), the observed intraspecific variation was, surprisingly, rather low. The present study shows that DNA fingerprinting with microsatellites successfully distinguishes among gene pools, cultivars, and, in some cases, among individuals.Key words: Leguminosae, plants, nonradioactive, simple sequences, digoxigenated oligonucleotide probes.


AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Neeraja Punde ◽  
Jennifer Kooken ◽  
Dagmar Leary ◽  
Patricia M. Legler ◽  
Evelina Angov

Abstract Codon usage frequency influences protein structure and function. The frequency with which codons are used potentially impacts primary, secondary and tertiary protein structure. Poor expression, loss of function, insolubility, or truncation can result from species-specific differences in codon usage. “Codon harmonization” more closely aligns native codon usage frequencies with those of the expression host particularly within putative inter-domain segments where slower rates of translation may play a role in protein folding. Heterologous expression of Plasmodium falciparum genes in Escherichia coli has been a challenge due to their AT-rich codon bias and the highly repetitive DNA sequences. Here, codon harmonization was applied to the malarial antigen, CelTOS (Cell-traversal protein for ookinetes and sporozoites). CelTOS is a highly conserved P. falciparum protein involved in cellular traversal through mosquito and vertebrate host cells. It reversibly refolds after thermal denaturation making it a desirable malarial vaccine candidate. Protein expressed in E. coli from a codon harmonized sequence of P. falciparum CelTOS (CH-PfCelTOS) was compared with protein expressed from the native codon sequence (N-PfCelTOS) to assess the impact of codon usage on protein expression levels, solubility, yield, stability, structural integrity, recognition with CelTOS-specific mAbs and immunogenicity in mice. While the translated proteins were expected to be identical, the translated products produced from the codon-harmonized sequence differed in helical content and showed a smaller distribution of polypeptides in mass spectra indicating lower heterogeneity of the codon harmonized version and fewer amino acid misincorporations. Substitutions of hydrophobic-to-hydrophobic amino acid were observed more commonly than any other. CH-PfCelTOS induced significantly higher antibody levels compared with N-PfCelTOS; however, no significant differences in either IFN-γ or IL-4 cellular responses were detected between the two antigens.


Genome ◽  
2010 ◽  
Vol 53 (10) ◽  
pp. 769-777 ◽  
Author(s):  
Melanie Mehes-Smith ◽  
Paul Michael ◽  
Kabwe Nkongolo

Genome organization in the family Pinaceae is complex and largely unknown. The main purpose of the present study was to develop and physically map species-diagnostic and species-specific molecular markers in pine and spruce. Five RAPD (random amplified polymorphic DNA) and one ISSR (inter-simple sequence repeat) species-diagnostic or species-specific markers for Picea mariana , Picea rubens , Pinus strobus , or Pinus monticola were identified, cloned, and sequenced. In situ hybridization of these sequences to spruce and pine chromosomes showed the sequences to be present in high copy number and evenly distributed throughout the genome. The analysis of centromeric and telomeric regions revealed the absence of significant clustering of species-diagnostic and species-specific sequences in all the chromosomes of the four species studied. Both RAPD and ISSR markers showed similar patterns.


2021 ◽  
pp. 1-11
Author(s):  
David S. da Silva ◽  
Heriberto F. da Silva Filho ◽  
Marcelo B. Cioffi ◽  
Edivaldo H.C. de Oliveira ◽  
Anderson J.B. Gomes

With 82 species currently described, the genus <i>Leptodactylus</i> is the most diverse and representative one in the family Leptodactylidae. Concerning chromosomal organization, this genus represents an interesting and underexplored group since data from molecular cytogenetics are incipient, and little is known about the organization and distribution of repetitive DNA elements in the karyotypes. In this sense, this study aimed at providing a comparative analysis in 4 <i>Leptodactylus</i> species (<i>L. macrosternum, L. pentadactylus, L. fuscus,</i> and <i>Leptodactylus</i> cf<i>. podicipinus</i>), combining conventional cytogenetics (Giemsa staining, C-banding, and AgNOR staining) and mapping of molecular markers (18S rDNA, telomeric and microsatellite probes), to investigate mechanisms underlying their karyotype differentiation process. The results showed that all species had karyotypes with 2n = 22 and FN = 44, except for <i>Leptodactylus</i> cf. <i>podicipinus</i> which presented FN = 36. The 18S rDNA was observed in pair 8 of all analyzed species (corresponding to pair 4 in <i>L. pentadactylus</i>), coinciding with the secondary constrictions and AgNOR staining. FISH with microsatellite DNA probes demonstrated species-specific patterns, as well as an association of these repetitive sequences with constitutive heterochromatin blocks and ribosomal DNA clusters, revealing the dynamics of microsatellites in the genome of the analyzed species. In summary, our data demonstrate an ongoing process of genomic divergence inside species with almost similar karyotype, driven most likely by a series of pericentric inversions, followed by differential accumulation of repetitive sequences.


2013 ◽  
Vol 72 (1) ◽  
pp. 1-133 ◽  
Author(s):  
Višnja Besendorfer ◽  
Jelena Mlinarec

Abstract Satellite DNAis a genomic component present in virtually all eukaryotic organisms. The turnover of highly repetitive satellite DNAis an important element in genome organization and evolution in plants. Here we study the presence, physical distribution and abundance of the satellite DNAfamily AhTR1 in Anemone. Twenty-two Anemone accessions were analyzed by PCR to assess the presence of AhTR1, while fluorescence in situ hybridization and Southern hybridization were used to determine the abundance and genomic distribution of AhTR1. The AhTR1 repeat unit was PCR-amplified only in eight phylogenetically related European Anemone taxa of the Anemone section. FISH signal with AhTR1 probe was visible only in A. hortensis and A. pavonina, showing localization of AhTR1 in the regions of interstitial heterochromatin in both species. The absence of a FISH signal in the six other taxa as well as weak signal after Southern hybridization suggest that in these species AhTR1 family appears as relict sequences. Thus, the data presented here support the »library hypothesis« for AhTR1 satellite evolution in Anemone. Similar species-specific satellite DNAprofiles in A. hortensis and A. pavonina support the treatment of A. hortensis and A. pavonina as one species, i.e. A. hortensis s.l.


Nematology ◽  
2009 ◽  
Vol 11 (6) ◽  
pp. 847-857 ◽  
Author(s):  
Lieven Waeyenberge ◽  
Nicole Viaene ◽  
Maurice Moens

Abstract ITS1, the 5.8S rRNA gene and ITS2 of the rDNA region were sequenced from 20 different Pratylenchus species. Additionally, the same region was sequenced from seven populations of P. penetrans. After purifying, cloning and sequencing the PCR products, all sequences were aligned in order to find unique sites suitable for the design of species-specific primers for P. penetrans. Since ITS regions showed variability between and even within populations of P. penetrans, only three small DNA sequences were suitable for the construction of three potentially useful species-specific primers. New species-specific primers were paired with existing universal ITS primers and tested in all possible primer combinations. The best performing primer set, supplemented with a universal 28S rDNA primer set that served as an internal control, was tested in duplex PCR. The ideal annealing temperature, Mg2+ concentration and primer ratios were then determined for the most promising primer set. The optimised duplex PCR was subsequently tested on a wide range of different Pratylenchus spp. and 25 P. penetrans populations originating from all over the world. To test the sensitivity, the duplex PCR was conducted on DNA extracted from a single P. penetrans nematode mixed with varying amounts of nematodes belonging to another Pratylenchus species. Results showed that a reliable and sensitive P. penetrans species-specific duplex PCR was constructed.


Genome ◽  
1992 ◽  
Vol 35 (4) ◽  
pp. 621-626 ◽  
Author(s):  
Peter M. Rogowsky ◽  
Ken W. Shepherd ◽  
Peter Langridge

A novel type of polymerase chain reaction (PCR) marker was developed for the mapping of cereal rye (Secale cereale). Primer pairs were synthesized targeting the insertion sites of three individual copies of the R173 family of rye specific repeated DNA sequences. While one primer was derived from a sequence within the respective R173 element, the second primer corresponded to a flanking region. The complex banding patterns obtained in rye allowed not only the mapping of the three R173 elements to certain chromosome regions of 1RS (the short arm of rye chromosome 1) but also the mapping of an additional 3–10 easily identifiable bands per primer pair to other rye chromosomes. Linkage mapping of a polymorphic 1R band derived from three rye cultivars demonstrated the presence of nonallelic, dominant markers in two independent crosses. Because of the high copy number of the R173 family (15 000 copies per diploid rye genome), its dispersion over the entire length of all chromosomes and the high number of markers obtained per primer pair, PCR markers based on the R173 family provide an almost unlimited source for well-spaced markers in rye mapping.Key words: polymerase chain reaction, mapping, repetitive DNA sequences, wheat, rye.


Sign in / Sign up

Export Citation Format

Share Document