Genome-wide identification, characterization, and transcriptional analysis of the metacaspase gene family in cucumber (Cucumis sativus)

Genome ◽  
2018 ◽  
Vol 61 (3) ◽  
pp. 187-194 ◽  
Author(s):  
Yong Zhou ◽  
Lifang Hu ◽  
Lunwei Jiang ◽  
Shiqiang Liu

Metacaspase (MC), a family of caspase-like proteins, plays vital roles in regulating programmed cell death (PCD) during development and in response to stresses in plants. In this study, five MC genes (designated as CsMC1 to CsMC5) were identified in the cucumber (Cucumis sativus) genome. Sequence analysis revealed that CsMC1–CsMC3 belong to type I MC proteins, while CsMC4 and CsMC5 are type II MC proteins. Phylogenetic tree and conserved motif analysis of MC proteins indicated that these proteins can be classified into two groups, which are correlated with the types of these MC proteins. Gene structure analysis demonstrated that type I CsMC genes contain 4–7 introns, while all type II CsMC genes harbor one intron. In addition, many hormone-, stress-, and development-related cis-elements were identified in the promoter regions of CsMC genes. Expression analysis using RNA-seq data revealed that CsMC genes have distinct expression patterns in various tissues and developmental stages. qRT-PCR results showed that the transcript levels of CsMC genes could be regulated by various abiotic stresses such as NaCl, PEG, and cold. These results demonstrate that the cucumber MC gene family may function in tissue development and plant stress responses.

Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 670 ◽  
Author(s):  
Dong ◽  
Jiang ◽  
Yang ◽  
Xiao ◽  
Bai ◽  
...  

The NAC gene family is one of the largest families of transcriptional regulators in plants, and it plays important roles in the regulation of growth and development as well as in stress responses. Genome-wide analyses have been performed in diverse plant species, but there is still no systematic analysis of the NAC genes of Coffea canephora Pierre ex A. Froehner. In this study, we identified 63 NAC genes from the genome of C. canephora. The basic features and comparison analysis indicated that the NAC gene members increased via duplication events during the evolution of the plant. Phylogenetic analysis divided the NAC proteins from C. canephora, Arabidopsis and rice into 16 subgroups. Analysis of the expression patterns of CocNACs under cold stress and coffee bean development indicated that 38 CocNACs were differentially expressed under cold stress; six genes may play important roles in the process of cold acclimation, and four genes among 54 CocNACs showing a variety of expression patterns during different developmental stages of coffee beans may be positively related to the bean development. This study can expand our understanding of the functions of the CocNAC gene family in cold responses and bean development, thereby potentially intensifying the molecular breeding programs of Coffea spp. plants.


2020 ◽  
Author(s):  
Hongyan Shen ◽  
Qiuping Tan ◽  
Wei Xiao ◽  
Wenpeng Deng ◽  
Xiaoyan Yu ◽  
...  

Abstract Background: Xyloglucan endotransglucosylase/hydrolases (XTHs) are a class of cell wall-associated enzymes involved in the construction and remodeling of cellulose/xyloglucan crosslinks. However, knowledge of this gene family in the model monocot Brachypodium distachyon is limited. Results: A total of 29 BdXTH genes were identified from the reference genome, and these were further divided into three main groups (Group I/II, Group III, and the Ancestral Group) through comparative phylogenetic analysis. Gene structure and protein motif analysis indicate that closely clustered BdXTH genes are relatively conserved within each group. A highly conserved amino acid domain (DEIDFEFLG) responsible for catalytic activity was identified in all BdXTH proteins. We detected three pairs of segmentally duplicated BdXTH genes and five groups of tandemly duplicated BdXTH genes, which have played important roles in the expansion of the BdXTH gene family. Cis -elements related to hormones, growth, and abiotic stress responses were identified in the promoters of each BdXTH gene. Most BdXTH genes have distinct expression patterns in different tissues and growth stages. Furthermore, when roots were treated with two abiotic stresses (salinity and drought) and four plant hormones (IAA, auxin; GA3, gibberellin; ABA, abscisic acid and BR, brassinolide), the expression levels of many BdXTH genes changed significantly, suggesting possible roles in response to various environmental stimuli and plant hormones. Conclusion: In this study, we performed genome-wide identification, characterization, and expression pattern analysis of the XTH gene family in Brachypodium, which provide valuable information for further elucidation of the biological functions of BdXTH genes in the model grass B. distachyon.


2016 ◽  
Vol 141 (5) ◽  
pp. 507-519 ◽  
Author(s):  
Xin Hao ◽  
Yu Fu ◽  
Wei Zhao ◽  
Lifei Liu ◽  
Rengui Bade ◽  
...  

The MADS-box gene family encodes a type of transcription factor, and plays a key role in the growth and development of plants. Here, we identified 62 MADS-box genes in the melon (Cucumis melo) genome using bioinformatics methods. These genes were divided into type I Mα, Mγ, and Mδ subfamilies (26 members) and type II MIKCC subfamilies (36 members) by phylogenetic analysis. There were no genes in type II AGL12, BS, TM8, and MIKC* subfamilies, and type I Mβ subfamilies. Conserved motif analysis showed that all motifs had a subfamily-specific distribution except the M domain. The expression analysis of the MADS-box genes showed different expression characteristics. In summary, this study is the first to identify melon MADS-box genes and analyze their gene structures, subfamily distribution, and expression characteristics. These results provide a foundation for investigating the functions of the melon MADS-box genes.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246021
Author(s):  
QingHua Li ◽  
XianTao Yu ◽  
Long Chen ◽  
Gang Zhao ◽  
ShiZhou Li ◽  
...  

Abscisic acid (ABA) is an important plant hormone that plays multiple roles in regulating growth and development as well as in stress responses in plants. The NCED gene family includes key genes involved in the process of ABA synthesis. This gene family has been found in many species; however, the function of the NCED gene family in cotton is unclear. Here, a total of 23 NCED genes (designated as GhNCED1 to GhNCED23) were identified in cotton. Phylogenetic analysis indicated that the identified NCED proteins from cotton and Arabidopsis could be classified into 4 subgroups. Conserved motif analysis revealed that the gene structure and motif distribution of proteins within each subgroup were highly conserved. qRT-PCR and ABA content analyses indicated that NCED genes exhibited stage-specific expression patterns at tissue development stages. GhNCED5, GhNCED6 and GhNCED13 expression was similar to the change in ABA content, suggesting that this gene family plays a role in ABA synthesis. These results provide a better understanding of the potential functions of GhNCED genes.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shujuan Tian ◽  
Jiao Jiang ◽  
Guo-qi Xu ◽  
Tan Wang ◽  
Qiyan Liu ◽  
...  

Abstract Background Kinesin (KIN) as a motor protein is a versatile nano-machine and involved in diverse essential processes in plant growth and development. However, the kinesin gene family has not been identified in watermelon, a valued and nutritious fruit, and yet their functions have not been characterized. Especially, their involvement in early fruit development, which directly determines the size, shape, yield and quality of the watermelon fruit, remains unclear. Results In this study, we performed a whole-genome investigation and comprehensive analysis of kinesin genes in C. lanatus. In total, 48 kinesins were identified and categorized into 10 kinesin subfamilies groups based on phylogenetic analysis. Their uneven distribution on 11 chromosomes was revealed by distribution analysis. Conserved motif analysis showed that the ATP-binding motif of kinesins was conserved within all subfamilies, but not the microtubule-binding motif. 10 segmental duplication pairs genes were detected by the syntenic and phylogenetic approaches, which showed the expansion of the kinesin gene family in C. lanatus genome during evolution. Moreover, 5 ClKINs genes are specifically and abundantly expressed in early fruit developmental stages according to comprehensive expression profile analysis, implying their critical regulatory roles during early fruit development. Our data also demonstrated that the majority of kinesin genes were responsive to plant hormones, revealing their potential involvement in the signaling pathways of plant hormones. Conclusions Kinesin gene family in watermelon was comprehensively analyzed in this study, which establishes a foundation for further functional investigation of C. lanatus kinesin genes and provides novel insights into their biological functions. In addition, these results also provide useful information for understanding the relationship between plant hormone and kinesin genes in C. lanatus.


2021 ◽  
pp. 1-15
Author(s):  
Yaqiong Wu ◽  
Chunhong Zhang ◽  
Wenlong Wu ◽  
Weilin Li ◽  
Lianfei Lyu

BACKGROUND: Black raspberry is a vital fruit crop with a high antioxidant function. MADS-box genes play an important role in the regulation of fruit development in angiosperms. OBJECTIVE: To understand the regulatory role of the MADS-box family, a total of 80 MADS-box genes were identified and analyzed. METHODS: The MADS-box genes in the black raspberry genome were analyzed using bioinformatics methods. Through an analysis of the promoter elements, the possible functions of different members of the family were predicted. The spatiotemporal expression patterns of members of the MADS-box family during black raspberry fruit development and ripening were systematically analyzed. RESULTS: The genes were classified into type I (Mα: 33; Mβ: 6; Mγ: 10) and type II (MIKC *: 2; MIKCC: 29) genes. We also obtained a complete overview of the RoMADS-box gene family through phylogenetic, gene structure, conserved motif, and cis element analyses. The relative expression analysis showed different expression patterns, and most RoMADS-box genes were more highly expressed in fruit than in other tissues of black raspberry. CONCLUSIONS: This finding indicates that the MADS-box gene family is involved in the regulation of fruit ripening processes in black raspberry.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kai Zhao ◽  
Song Chen ◽  
Wenjing Yao ◽  
Zihan Cheng ◽  
Boru Zhou ◽  
...  

Abstract Background The bZIP gene family, which is widely present in plants, participates in varied biological processes including growth and development and stress responses. How do the genes regulate such biological processes? Systems biology is powerful for mechanistic understanding of gene functions. However, such studies have not yet been reported in poplar. Results In this study, we identified 86 poplar bZIP transcription factors and described their conserved domains. According to the results of phylogenetic tree, we divided these members into 12 groups with specific gene structures and motif compositions. The corresponding genes that harbor a large number of segmental duplication events are unevenly distributed on the 17 poplar chromosomes. In addition, we further examined collinearity between these genes and the related genes from six other species. Evidence from transcriptomic data indicated that the bZIP genes in poplar displayed different expression patterns in roots, stems, and leaves. Furthermore, we identified 45 bZIP genes that respond to salt stress in the three tissues. We performed co-expression analysis on the representative genes, followed by gene set enrichment analysis. The results demonstrated that tissue differentially expressed genes, especially the co-expressing genes, are mainly involved in secondary metabolic and secondary metabolite biosynthetic processes. However, salt stress responsive genes and their co-expressing genes mainly participate in the regulation of metal ion transport, and methionine biosynthetic. Conclusions Using comparative genomics and systems biology approaches, we, for the first time, systematically explore the structures and functions of the bZIP gene family in poplar. It appears that the bZIP gene family plays significant roles in regulation of poplar development and growth and salt stress responses through differential gene networks or biological processes. These findings provide the foundation for genetic breeding by engineering target regulators and corresponding gene networks into poplar lines.


2019 ◽  
Vol 20 (13) ◽  
pp. 3235 ◽  
Author(s):  
Yanguo Ke ◽  
Farhat Abbas ◽  
Yiwei Zhou ◽  
Rangcai Yu ◽  
Yuechong Yue ◽  
...  

Auxin plays a key role in different plant growth and development processes, including flower opening and development. The perception and signaling of auxin depend on the cooperative action of various components, among which auxin/indole-3-acetic acid (Aux/IAA) proteins play an imperative role. In a recent study, the entire Aux/IAA gene family was identified and comprehensively analyzed in Hedychium coronarium, a scented species used as an ornamental plant for cut flowers. Phylogenetic analysis showed that the Aux/IAA gene family in H. coronarium is slightly contracted compared to Arabidopsis, with low levels of non-canonical proteins. Sequence analysis of promoters showed numerous cis-regulatory elements related to various phytohormones. HcIAA genes showed distinct expression patterns in different tissues and flower developmental stages, and some HcIAA genes showed significant responses to auxin and ethylene, indicating that Aux/IAAs may play an important role in linking hormone signaling pathways. Based on the expression profiles, HcIAA2, HcIAA4, HcIAA6 and HcIAA12, were selected as candidate genes and HcIAA2 and HcIAA4 were screened for further characterization. Downregulation of HcIAA2 and HcIAA4 by virus-induced gene silencing in H. coronarium flowers modified the total volatile compound content, suggesting that HcIAA2 and HcIAA4 play important roles in H. coronarium floral scent formation. The results presented here will provide insights into the putative roles of HcIAA genes and will assist the elucidation of their precise roles during floral scent formation.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shuo Wei ◽  
Wen Zhang ◽  
Rao Fu ◽  
Yang Zhang

Abstract Background 2-Oxoglutarate and Fe(II)-dependent dioxygenases (2ODDs) belong to the 2-oxoglutarate-dependent dioxygenase (2OGD) superfamily and are involved in various vital metabolic pathways of plants at different developmental stages. These proteins have been extensively investigated in multiple model organisms. However, these enzymes have not been systematically analyzed in tomato. In addition, type I flavone synthase (FNSI) belongs to the 2ODD family and contributes to the biosynthesis of flavones, but this protein has not been characterized in tomato. Results A total of 131 2ODDs from tomato were identified and divided into seven clades by phylogenetic classification. The Sl2ODDs in the same clade showed similar intron/exon distributions and conserved motifs. The Sl2ODDs were unevenly distributed across the 12 chromosomes, with different expression patterns among major tissues and at different developmental stages of the tomato growth cycle. We characterized several Sl2ODDs and their expression patterns involved in various metabolic pathways, such as gibberellin biosynthesis and catabolism, ethylene biosynthesis, steroidal glycoalkaloid biosynthesis, and flavonoid metabolism. We found that the Sl2ODD expression patterns were consistent with their functions during the tomato growth cycle. These results indicated the significance of Sl2ODDs in tomato growth and metabolism. Based on this genome-wide analysis of Sl2ODDs, we screened six potential FNSI genes using a phylogenetic tree and coexpression analysis. However, none of them exhibited FNSI activity. Conclusions Our study provided a comprehensive understanding of the tomato 2ODD family and demonstrated the significant roles of these family members in plant metabolism. We also suggest that no FNSI genes in tomato contribute to the biosynthesis of flavones.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hao Song ◽  
Ximing Guo ◽  
Lina Sun ◽  
Qianghui Wang ◽  
Fengming Han ◽  
...  

Abstract Background Inhibitors of apoptosis (IAPs) are critical regulators of programmed cell death that are essential for development, oncogenesis, and immune and stress responses. However, available knowledge regarding IAP is largely biased toward humans and model species, while the distribution, function, and evolutionary novelties of this gene family remain poorly understood in many taxa, including Mollusca, the second most speciose phylum of Metazoa. Results Here, we present a chromosome-level genome assembly of an economically significant bivalve, the hard clam Mercenaria mercenaria, which reveals an unexpected and dramatic expansion of the IAP gene family to 159 members, the largest IAP gene repertoire observed in any metazoan. Comparative genome analysis reveals that this massive expansion is characteristic of bivalves more generally. Reconstruction of the evolutionary history of molluscan IAP genes indicates that most originated in early metazoans and greatly expanded in Bivalvia through both lineage-specific tandem duplication and retroposition, with 37.1% of hard clam IAPs located on a single chromosome. The expanded IAPs have been subjected to frequent domain shuffling, which has in turn shaped their architectural diversity. Further, we observed that extant IAPs exhibit dynamic and orchestrated expression patterns among tissues and in response to different environmental stressors. Conclusions Our results suggest that sophisticated regulation of apoptosis enabled by the massive expansion and diversification of IAPs has been crucial for the evolutionary success of hard clam and other molluscan lineages, allowing them to cope with local environmental stresses. This study broadens our understanding of IAP proteins and expression diversity and provides novel resources for studying molluscan biology and IAP function and evolution.


Sign in / Sign up

Export Citation Format

Share Document