Influence of compaction temperature on rubberized asphalt mixes and binders

2008 ◽  
Vol 35 (9) ◽  
pp. 908-917 ◽  
Author(s):  
Soon-Jae Lee ◽  
Serji N. Amirkhanian ◽  
Khaldoun Shatanawi ◽  
Carl Thodesen

This research investigates the influence of compaction temperature on rubberized asphalt mixes and binders. For this, four Superpave mix designs for four asphalt binders (control, 3% styrene–butadiene–styrene (SBS)-modified, 10% rubber-modified, and 15% rubber-modified) were carried out. A total of 160 specimens were manufactured at four compaction temperatures of 116, 135, 154, and 173 °C. The binders were artificially short-term aged for 2 h at the mixture compaction temperatures prior to the binder tests. The results from this study showed that: (i) the control and SBS-modified mixtures could have almost the same air–void contents at a wide range of compaction temperatures; (ii) the compaction temperatures significantly affected the volumetric properties of the rubberized mixes; (iii) the aging difference of asphalt binder in the mixture depending on the compaction temperature is not considered to be a main factor affecting the volumetric properties of the mixtures.

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2888
Author(s):  
Sylwia Dziadosz ◽  
Mieczysław Słowik ◽  
Filip Niwczyk ◽  
Marcin Bilski

The paper presents the results of laboratory investigation on asphalt binders relaxation at low temperature, carried out in a ductilometer using the tensile test with continuous force measurement. Polymer modified asphalt binder samples consisting of a 50/70 penetration grade bitumen mixed with a concentrate of styrene-butadiene-styrene (SBS) modified bitumen—a 160/220 penetration grade bitumen modified with a SBS copolymer in the amount of 9%—were tested. Therefore, polymer modified binders containing 3%, 4.5%, 6% and 7.5% SBS, respectively, were obtained and investigated. Tensile tests were performed at −16 °C on samples before aging and subjected to short-term aging (RTFOT). Test results in the form of relaxation curves have been mathematically described using a modified generalized Maxwell model. Based on the acquired results, it was shown that the increase of the SBS copolymer content in asphalt binder precipitates the relaxation process, while aging slows down this phenomenon. It has also been proven that with increased content of SBS elastomer in asphalt binder, the effect of short-term aging on binder’s stress relaxation ability at low temperatures is reduced.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5715
Author(s):  
Bangwei Wu ◽  
Chufan Luo ◽  
Zhaohui Pei ◽  
Chuangchuang Chen ◽  
Ji Xia ◽  
...  

A wide variety of polymer additives have been widely used in recent years. However, the effect of different polymer additives on the durability of asphalt binders has not been investigated thoroughly. To evaluate the aging property of styrene-butadiene-styrene (SBS) asphalt binder with different polymer additives, three polymer modifiers, namely high modulus modifier (HMM), anti-rutting agent (ARA), and high viscosity modifier (HVM), were added to it. First, the Thin Film Over Test (TFOT) and Pressure Aging Vessel (PAV) was performed on the asphalt binders. The rheological properties of the four asphalt binders before and after aging were then checked by the Dynamic Shear Rheometer Test (DSR). The chemical compositions of the asphalt binders were determined by the Fourier Transform Infrared Spectrometer (FTIR) test. Several aging indicators were adopted to reflect the aging degree of the asphalt binders. The results show that when polymer additives are added to the SBS asphalt binder, the complex modulus, storage modulus, loss modulus, and rutting factor substantially increase and the phase angle decreases. All the test parameters become higher after aging. The phase angle of the SBS asphalt binder is the highest at both unaged and aged states, while its other parameters values are the smallest. Moreover, the Carbonyl Aging Indicator (CAI) of SBS with polymer additives becomes lower under both TFOT and PAV conditions, indicating that polymer additives can improve the aging resistance of SBS asphalt, of which HVM modifies the aging resistance best. Complex Modulus Aging Indicator (CMAI) and Storage Modulus Aging Indicator (SMAI) have the best correlation coefficients with CAI, and the two aging indicators can be used to predict the aging degree of polymer modified asphalt binders.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1006 ◽  
Author(s):  
Wensheng Wang ◽  
Yongchun Cheng ◽  
Peilei Zhou ◽  
Guojin Tan ◽  
Haitao Wang ◽  
...  

Superpave gyratory compaction (SGC) and Marshall compaction methods are essentially designed according to volumetric properties. In spite of the similarity, the optimum asphalt contents (OAC) of the two methods are greatly affected by the laboratory compaction process, which would further influence their performance. This study aims to evaluate the performance of styrene-butadiene-styrene (SBS)-modified stone mastic asphalt (SMA) with basalt fiber by using SGC and Marshall compaction methods. Basalt fiber was proved to improve and strength the basic properties of SBS-asphalt according to test results of asphalt binder. The effects of SGC and Marshall compaction methods on OAC and volumetric properties, i.e., density, air voids (VA), voids in mineral aggregates (VMA), and voids filled with asphalt (VFA), were evaluated in detail. Finally, the pavement performance of asphalt mixture prepared by SGC and Marshall compaction methods were compared in order to analyze the high-temperature creep, low-temperature splitting, and moisture stability performance. Results showed that the OAC of SGC (~5.70%) was slightly lower than that of Marshall method (5.80%). Furthermore, the pavement performance of SGC specimens were improved to a certain extent compared with Marshall specimens, indicating that SGC has a better compaction effect and mechanical performance.


Author(s):  
Jiri Stastna ◽  
Ludo Zanzotto ◽  
Otaca Vacin

Shear vibrations in conventional and polymer-modified asphalt binders are examined. Using dynamic compliances instead of moduli, viscous deformation effects can be separated from total deformation and the modified dynamic loss compliance and modified loss tangent functions can be defined. These two material functions appear to be more sensitive than viscoelastic moduli to the rheological behavior of asphalt binders and to changes caused by polymer addition. The characteristic temperature of the transition from the viscoelastic to viscous behavior of asphalt binder ( Tv) can be identified by using the viscous asymptote J”. The damping of shear vibrations that likely relates to the internal structure of asphalt material can be described by the modified loss tangent. The rheological behavior of the base asphalt 200/300 penetration grade and its blends with different amounts of radial styrene-butadiene-styrene rubber is investigated. Using master curves of dynamic functions and the Williams-Landel-Ferry form of the shift factor, isochrones of the original and modified dynamic material functions are constructed. Characteristic temperatures of the viscous transition ( Tv) and the glass transition ( Tg) are determined. Damping behaviors of the base and modified asphalts are studied.


Environments ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 47
Author(s):  
Lim Min Khiong ◽  
Md. Safiuddin ◽  
Mohammad Abdul Mannan ◽  
Resdiansyah

This paper presents the results of a laboratory-based experimental investigation on the properties of asphalt binder and hot-mix asphalt (HMA) mixes modified by locally available crumb rubber, which was used as a partial replacement of asphalt by weight. In this study, fine crumb rubber with a particle size in the range of 0.3–0.6 mm, obtained from scrap tires, was added to the asphalt binder through the wet process. Crumb rubber contents of 5%, 10%, 15%, and 19% by weight of asphalt were added to the virgin binder in order to prepare the modified asphalt binder samples, while the unmodified asphalt binder was used as the control sample. The crumb rubber modified binder samples were examined for measuring viscosity indirectly using the penetration test, and temperature resistance using the softening point test. Later, both the modified and unmodified asphalt binders were used to produce HMA mixes. Two categories of HMA mix commonly used in Malaysia—namely, AC 14 (dense-graded) and SMA 14 (gap-graded)—were produced using the modified asphalt binders containing 5%, 10%, 15%, and 19% crumb rubber. Two AC 14 and SMA 14 control mixes were also produced, incorporating the unmodified asphalt binder (0% crumb rubber). All of the AC 14 and SMA 14 asphalt mixes were examined in order to determine their volumetric properties, such as bulk density, voids in total mix (VTM), voids in mineral aggregate (VMA), and voids filled with asphalt (VFA). In addition, the Marshall stability, Marshall flow, and stiffness of all of the AC 14 and SMA 14 mixes were determined. Test results indicated that the modified asphalt binders possessed higher viscosity and temperature resistance than the unmodified asphalt binder. The viscosity and temperature resistance of the asphalt binders increased with the increase in their crumb rubber content. The increased crumb rubber content also led to improvements in the volumetric properties (bulk density, VTM, VMA, and VFA) of the AC 14 and SMA 14 mixes. In addition, the performance characteristics of the AC 14 and SMA 14 mixes—such as Marshall stability, Marshall flow, and stiffness—increased with the increase in crumb rubber content. However, the AC 14 mixes performed much better than the SMA 14 mixes. The overall research findings suggest that crumb rubber can be used to produce durable and sustainable HMA mixes, with manifold environmental benefits, for use in flexible pavements carrying the heavy traffic load of highways.


2021 ◽  
Vol 1036 ◽  
pp. 459-470
Author(s):  
Hong Gang Zhang ◽  
Qiang Huai Zhang ◽  
Xue Ting Wang ◽  
Hua Tan ◽  
Li Ning Gao ◽  
...  

A styrene-butadiene-styrene triblock copolymer (SBS) was grafted with an unsaturated polar monomer (monomer A) composed of maleic anhydride (MAH) and methoxy polyethylene (MPEG) via a ring-opening reaction after epoxidizing styrene-butadiene-styrene triblock copolymer (ESBS). The microscopic changes of SBS before and after grafting has been characterized with Fourier transform infrared spectrum (FT-IR), X-ray photoelectron spectroscopy (XPS) and gel permeation chromatography (GPC). The results revealed that the monomer A was successfully grafted on SBS backbone, and the maximum graft ratio (GR) was 20.32%. To verify the compatibility between SBS and asphalt, solubility parameters and surface free energy (SFE) of SBS, grafted SBS and asphalt were measured. It was found that the solubility parameter and SFE of grafted SBS were closer to asphalt compared with SBS. It also has been confirmed from storage stability that the temperature susceptibility of grafted SBS modified asphalt was reduced in compare with SBS modified asphalt binder. As consequence, the use of grafted copolymer can be considered a suitable alternative for modification of asphalt binder in pavement.


Author(s):  
Weidong Huang ◽  
Lu Zhou

Moisture damage is a prominent problem of asphalt pavements. The bond strength between asphalt and aggregates is a crucial factor that influences the capability of asphalt to resist moisture-induced damage. In this study, a binder bond strength (BBS) test was conducted to evaluate the effects of various modifiers and additives of different amounts on bond strength between asphalt and aggregates. Furthermore, the influence of styrene–butadiene–styrene (SBS) on adhesion behavior of asphalt binder was investigated through a gel permeation chromatography (GPC) test. Finally, the results of the BBS test were compared with the findings obtained from a Hamburg wheel-tracking device (HWTD) test, which reflected the moisture sensitivity of mixtures under wet conditions. Results indicated that gilsonite, high-density polyethylene, and polyphosphoric acid improved the bond strength of the base asphalt; SBS had no positive effects on asphalt adhesion properties; and SBS at a low amount reduced the bond strength. Ethylene bis-stearamide wax, crumb rubber, terminal blend (TB) rubber powder, and compound modifier TB rubber powder plus SBS decreased the bond strength. The GPC test results showed that SBS possibly did not actively contribute to the formation of bond strength between asphalt and aggregates. Test data for BBS and HWTD tests under wet conditions confirmed that there was no discernible correlation between these two tests when adhesion properties of modified asphalts were evaluated. However, the results of the BBS test were in accordance with those of the HWTD test when the adhesion of asphalt with different amounts of the same modifier and the mixture resistance to water damage were evaluated.


Recycling ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 11 ◽  
Author(s):  
Eslam Deef-Allah ◽  
Magdy Abdelrahman ◽  
Mark Fitch ◽  
Mohyeldin Ragab ◽  
Mousumi Bose ◽  
...  

Road deterioration inspires researchers to enhance the properties of asphalt binder for better performing mixes. Recycled tire rubber, or crumb rubber modifier (CRM), and used motor oil (UMO) are two modifiers that enhance asphalt binder performance through two different mechanisms. CRM affects high-temperature properties while UMO modifies low-temperature properties. Potential environmental concerns arising from the use of UMO have been raised in the literature. In this paper, the two recycled materials were investigated for their ability to complement each other. Both performance benefits of using both materials and the environmental concerns of using UMO were studied. Four CRM asphalt binders were investigated: two with UMO and two without UMO. Environmental impacts were evaluated using gas chromatography to check air emissions for benzene, toluene, ethyl-benzene, and xylenes (BTEX). The potential for toxic leaching of elements from modified hot mix asphalt (HMA) were checked using the US Environmental Protection Agency (EPA) Toxicity Characteristic Leaching Protocol (TCLP). For asphalt binders modified by CRM-UMO combinations, CRM decreased the amounts of released BTEX components, presumably by absorbing UMO and slowing the release of BTEX. Leaching results concluded that UMO mixtures showed a notable percentage of sulfur (S) as compared to non-UMO mixes. All these leachate components were under EPA limits.


Sign in / Sign up

Export Citation Format

Share Document