Antioxidant status in J774A.1 macrophage cell line during chronic exposure to glycated serum

2005 ◽  
Vol 83 (2) ◽  
pp. 176-187 ◽  
Author(s):  
Anna Maria Bassi ◽  
Sabina Ledda ◽  
Maria Clara De Pascale ◽  
Susanna Penco ◽  
Simona Rossi ◽  
...  

Advanced glycation end-products (AGEs) are linked to aging and correlated diseases. The aim of present study was to evaluate oxidative stress related parameters in J774A.1 murine macrophage cells during chronic exposure to a subtoxic concentration of AGE (5% ribose-glycated serum (GS)) and subsequently for 48 h to a higher dose (10% GS). No effects on cell viability were evident in either experimental condition. During chronic treatment, glycative markers (free and bound pentosidine) increased significantly in intra- and extracellular environments, but the production and release of thiobarbituric acid reactive substances (TBARs), as an index of lipid peroxidation, underwent a time-dependent decrease. Exposure to 10% GS evidenced that glycative markers rose further, while TBARs elicited a cellular defence against oxidative stress. Nonadapted cultures showed an accumulation of AGEs, a marked oxidative stress, and a loss of viability. During 10% GS exposure, reduced glutathione levels in adapted cultures remained constant, as did the oxidized glutathione to reduced glutathione ratio, while nonadapted cells showed a markedly increased redox ratio. A constant increase of heat shock protein 70 (HSP70) mRNA was observed in all experimental conditions. On the contrary, HSP70 expression became undetectable for a longer exposure time; this could be due to the direct involvement of HSP70 in the refolding of damaged proteins. Our findings suggest an adaptive response of macrophages to subtoxic doses of AGE, which could constitute an important factor in the spread of damage to other cellular types during aging.Key words: in vitro cytotoxicity, AGE, pentosidine, glycoxidation, oxidative stress, TBARs.

2021 ◽  
Vol 9 (F) ◽  
pp. 370-388
Author(s):  
Ratih Dewi Yudhani ◽  
Dwi Aris Agung Nugrahaningsih ◽  
Eti Nurwening Sholikhah ◽  
Mustofa Mustofa

BACKGROUND: Insulin resistance (IR) is known as the root cause of type 2 diabetes; hence, it is a substantial therapeutic target. Nowadays, studies have shifted the focus to natural ingredients that have been utilized as a traditional diabetes treatment, including Swietenia macrophylla. Accumulating evidence supports the hypoglycemic activities of S. macrophylla seeds extract, although its molecular mechanisms have yet to be well-established. AIM: This review focuses on the hypoglycemic molecular mechanisms of S. macrophylla seeds extract and its safety profiles. METHODS: An extensive search of the latest literature was conducted from four main databases (PubMed, Scopus, Science Direct, and Google Scholar) using several keywords: “swietenia macrophylla, seeds, and diabetes;” “swietenia macrophylla, seeds, and oxidative stress;” “swietenia macrophylla, seeds, and inflammation;” “swietenia macrophylla, seeds, and GLUT4;” and “swietenia macrophylla, seeds, and toxicities.” RESULTS: The hypoglycemic activities occur through modulating several pathways associated with IR and T2D pathogenesis. The seeds extract of S. macrophylla modulates oxidative stress by decreasing malondialdehyde (MDA), oxidized low-density lipoprotein, and thiobarbituric acid-reactive substances while increasing antioxidant enzymes (superoxide dismutase, glutathione peroxidase, and catalase). Another propose mechanism is the modulating of the inflammatory pathway by attenuating nuclear factor kappa β, tumor necrosis factor α, inducible nitric oxide synthase, and cyclooxygenase 2. Some studies have shown that the extract can also control phosphatidylinositol-3-kinase/ Akt (PI3K/Akt) pathway by inducing glucose transporter 4, while suppressing phosphoenolpyruvate carboxykinase. Moreover, in vitro cytotoxicity and in vivo toxicity studies supported the safety profile of S. macrophylla seeds extract with the LD50 higher than 2000 mg/kg. CONCLUSION: The potential of S. macrophylla seeds as antidiabetic candidate is supported by many studies that have documented their non-toxic and hypoglycemic effects, which involve several molecular pathways.


2012 ◽  
Vol 47 (No. 10 - 11) ◽  
pp. 303-308 ◽  
Author(s):  
B. Gradinski-Vrbanac ◽  
Z. Stojevič ◽  
S. Milinkovič-Tur ◽  
T. Balenovič ◽  
J. Piršljin ◽  
...  

The susceptibility of erythrocyte lipid to in vitro peroxidation as measured by TBARS (thiobarbituric acid-reactive substances) and concentration of reduced glutathione (GSH) in whole blood and erythrocyte suspension before and after incubation with hydrogen peroxide was assessed in ducks, chickens and pigs. A high susceptibility of erythrocytes to peroxidation in vitro was observed in all animals tested, but this susceptibility was of different intensity. Pig erythrocytes exhibited the lowest resistance to oxidative stress in vitro as compared with that in ducks (P < 0.01) and chickens (P < 0.02). A high level of GSH in the erythrocytes of ducks and chickens offers higher resistance to oxidative stress in comparison with that in the pig erythrocytes.


2009 ◽  
Vol 28 (10) ◽  
pp. 611-617 ◽  
Author(s):  
Betul Catalgol ◽  
Gül Özhan ◽  
Buket Alpertunga

Acrylamide (AA), a widely used industrial chemical, is shown to be neurotoxic, mutagenic and carcinogenic. This study was carried out to investigate the effects of different doses of AA on lipid peroxidation (LPO), haemolysis, methaemoglobin (MetHb) and antioxidant system in human erythrocytes in vitro. Erythrocyte solutions were incubated with 0.10, 0.25, 0.50 and 1.00 mM of AA at 37°C for 1 hour. At the end of the incubation, malondialdehyde (MDA), an end product of LPO, was determined by liquid chromatography (LC) while total glutathione, reduced glutathione (GSH) levels, activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) enzymes and the rates of haemolysis and MetHb were determined by spectrophotometric methods. All of the studied concentrations of AA increased MetHb formation and SOD activity, and induced MDA formation and haemolysis due to the destruction of erythrocyte cell membrane. AA caused a decrease in the activities of GSH-Px, CAT and GSH levels. However, these effects of AA were seen only at higher concentrations than AA intake estimated for populations in many countries. We suggest that LPO process may not be involved in the toxic effects of AA in low concentrations, although the present results showed that the studied concentrations of AA exert deteriorating effects on antioxidant enzyme activities, LPO process and haemolysis.


2009 ◽  
Vol 79 (1) ◽  
pp. 48-56 ◽  
Author(s):  
Chaturvedi

In the present study, protective effects of bitter melon (Momordica charantia) extract on lipid peroxidation induced by immobilization stress in rats have been assessed. Graded doses of extract (50, 100, and 150 mg/kg body weight) were administered orally to rats subjected to immobilization stress for two hours for seven consecutive days. Stress was applied by keeping the rats in a cage where no movement was possible. After seven days, rats were killed by decapitation after ether anesthesia. Blood and liver were collected to measure thiobarbituric acid reactive substances, reduced glutathione, and catalase. In vitro effects of M. charantia extract on lipid peroxidation in liver homogenate of normal, control, and rats pretreated with extract were carried out against cumene hydroperoxide-induced lipid peroxidation. Results reveal that in vivo M. charantia inhibited stress-induced lipid peroxidation by increasing the levels of reduced glutathione and activities of catalase. These results were further supported by in vitro results. In vitro inhibition of lipid peroxidation was indicated by low levels of thiobarbituric acid in the liver homogenate from pretreated rats and normal rats when incubated with both cumene hydroperoxide and extract. Inhibition was also noted in the homogenate where the rats were pretreated but the mixture contained no extract. Thus this plant provides protection by strengthening the antioxidants like reduced glutathione and catalase. Inclusion of this plant in the daily diet would be beneficial.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 161 ◽  
Author(s):  
Eliana B. Souto ◽  
Selma B. Souto ◽  
Aleksandra Zielinska ◽  
Alessandra Durazzo ◽  
Massimo Lucarini ◽  
...  

We have developed a new cationic solid lipid nanoparticle (SLN) formulation, composed of Compritol ATO 888, poloxamer 188 and cetyltrimethylammonium bromide (CTAB), to load perillaldehyde 1,2-epoxide, and surface-tailored with a monoclonal antibody for site-specific targeting of human epithelial growth receptor 2 (HER2). Perillaldehyde 1,2-epoxide-loaded cationic SLN (cPa-SLN), with a mean particle size (z-Ave) of 275.31 ± 4.78 nm and polydispersity index (PI) of 0.303 ± 0.081, were produced by high shear homogenization. An encapsulation efficiency of cPa-SLN above 80% was achieved. The release of perillaldehyde 1,2-epoxide from cationic SLN followed the Korsemeyer–Peppas kinetic model, which is typically seen in nanoparticle formulations. The lipid peroxidation of cPa-SLN was assessed by the capacity to produce thiobarbituric acid-reactive substances, while the antioxidant activity was determined by the capacity to scavenge the stable radical DPPH. The surface functionalization of cPa-SLN with the antibody was done via streptavidin-biotin interaction, monitoring z-Ave, PI and ZP of the obtained assembly (cPa-SLN-SAb), as well as its stability in phosphate buffer. The effect of plain cationic SLN (c-SLN, monoterpene free), cPa-SLN and cPa-SLN-SAb onto the MCF-7 cell lines was evaluated in a concentration range from 0.01 to 0.1 mg/mL, confirming that streptavidin adsorption onto cPa-SLN-SAb improved the cell viability in comparison to the cationic cPa-SLN.


2015 ◽  
Vol 62 (2) ◽  
pp. 13-19
Author(s):  
Urmila Jarouliya ◽  
Anish Zacharia ◽  
Raj K. Keservani ◽  
Godavarthi B.K.S Prasad

Abstract Diabetes mellitus is a metabolic disorder characterised by hyperglycemia and oxidative stress. The aim of the present study is to explore the antioxidant effect of Spirulina maxima in rat model along with the histopathological observations. Diabetes was induced by feeding 10% fructose solution orally to Wistar rats (n = 6) for 30 days, analysed for plasma blood glucose and the markers of the oxidative stress [catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH) and thiobarbituric acid reactive substances (TBARS)]. These biochemical studies were associated with histopathological examination of liver and kidney sections. The microalga Spirulina maxima being rich in proteins and other essential nutrients is widely used as a food supplement. S. maxima at a dose of 5 and 10% per kg and the metformin (500 mg/kg) as reference drug were given orally for 30 days to the diabetic rats. Diabetic rats showed significant (p < 0.001) elevations in plasma blood glucose, thiobarbituric acid-reactive substances and significant reduction in catalase, superoxide dismutase and reduced glutathione activity. Oral administration of 5 and 10% aqueous extract of S. maxima for 30 days restored not only of blood glucose levels but also markers of oxidative stress. Histopathological observations of tissues manifested that the S. maxima administration had the protective and therapeutic effects against fructose-induced abnormalities in diabetic rats. It is concluded that S. maxima is effective in reinstating the antioxidant activity in addition to its antidiabetic effect in type 2 diabetic rats.


2003 ◽  
Vol 51 (3) ◽  
pp. 343-351 ◽  
Author(s):  
Ewa Brzezińska-Ślebodzińska

The effect of hypothyroidism on some oxidative stress parameters is reported. Moderate hypothyroid state was induced in two groups of female rabbits (3 and 12 months old) by giving 50 mg/kg body weight (BW) of propylthiouracil (PTU) per os for 6 days and 20 mg/kg BW of methimazole (MMI) for further 14 days. Serum T4 and T3 concentrations decreased by about 38-40 and 32-36%, respectively. The induced hypothyroidism resulted in a significant decrease in the serum concentration of the lipid peroxidation end-product malondialdehyde, as measured by the thiobarbituric-acid assay. Erythrocytes of hypothyroid animals exhibited higher resistance to oxidative stress, while submitted to free radicals generator 2,2'-azo-bis(2-amidinopropane) hydrochloride (AAPH) in vitro. Using two detector systems (phospholipid liposomes and deoxyribose), sensitive to either organic or inorganic oxygen radical damage, the ability of euthyroid and hypothyroid rabbit plasma to protect against oxygen radicals was evaluated. The plasma of hypothyroid animals showed about 20% higher ability to protect against iron-binding organic radicals, but about 50% lower chain-breaking antioxidant activity. The antioxidant capacity of plasma against inorganic radicals was not affected by hypothyroidism. In conclusion, the results show that thyroid hormones modulate the free-radical-induced oxidative damage of lipids and that hypothyroidism offers some protection against lipid peroxidation.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Monika A. Olszewska ◽  
Joanna Kolodziejczyk-Czepas ◽  
Magdalena Rutkowska ◽  
Anna Magiera ◽  
Piotr Michel ◽  
...  

Polyphenol-rich plant extracts might alleviate the negative impact of oxidative stress and inflammation, but careful phytochemical standardisation and evaluation of various mechanisms are required to fully understand their effects. In this context, flower extracts of Sorbus aucuparia L.—a traditional medicinal plant—were investigated in the present work. The LC-MS/MS profiling of the extracts, obtained by fractionated extraction, led to the identification of 66 constituents, mostly flavonols (quercetin and sexangularetin glycosides with dominating isoquercitrin), pseudodepsides of quinic and shikimic acids (prevailing isomers of chlorogenic acid and cynarin), and flavanols (catechins and proanthocyanidins). Minor extract components of possible chemotaxonomic value were flavalignans (cinchonain I isomers) and phenylamides (spermidine derivatives). As assessed by HPLC-PDA and UV-spectrophotometric studies, the extracts were polyphenol-abundant, with the contents up to 597.6 mg/g dry weight (dw), 333.9 mg/g dw, 382.0 mg/g dw, and 169.0 mg/g dw of total phenolics, flavonoids, proanthocyanidins, and caffeoylquinic acids, respectively. Their biological in vitro effects were phenolic-dependent and the strongest for diethyl ether, ethyl acetate, and n-butanol fractions of the methanol-water (7 : 3, v/v) extract. The extracts showed significant, concentration-dependent ability to scavenge in vivo-relevant radical/oxidant agents (O2∙−, OH∙, H2O2, ONOO–, NO∙, and HClO) with the strongest effects towards OH∙, ONOO–, HClO, and O2∙− (compared to ascorbic acid). Moreover, the extracts efficiently inhibited lipoxygenase and hyaluronidase (compared to indomethacin) but were inactive towards xanthine oxidase. At in vivo-relevant levels (1-5 μg/mL), they also effectively protected human plasma components (proteins and lipids) against ONOO–-induced oxidative damage (reduced the levels of 3-nitrotyrosine, lipid hydroperoxides, and thiobarbituric acid-reactive substances) and normalised/enhanced the total nonenzymatic antioxidant capacity of plasma. In cytotoxicity tests, the extracts did not affect the viability of human PBMCs and might be regarded as safe. The results support the application of the extracts in the treatment of oxidative stress-related pathologies cross-linked with inflammatory changes.


1994 ◽  
Vol 300 (1) ◽  
pp. 201-209 ◽  
Author(s):  
G Elia ◽  
M G Santoro

Synthesis of heat-shock proteins (HSPs) is universally induced in eukaryotic and prokaryotic cells by exposure to elevated temperatures or to other types of environmental stress. In mammalian cells, HSPs belonging to the 70 kDa family (HSP70) have a regulatory role in several cellular processes, and have been shown to be involved in the control of cell proliferation and differentiation. Although many types of HSP70 inducers have been identified, only a few compounds, all belonging to the flavonoid group, have been shown to inhibit HSP70 induction. Because inhibitors of HSP70 synthesis could be an important tool with which to study the function of this protein, we have investigated the effect of quercetin, a flavonoid with antiproliferative activity which is widely distributed in nature, on HSP70 synthesis in human K562 erythroleukaemia cells after treatment with severe or mild heat shock and with other inducers. Quercetin was found to affect HSP70 synthesis at more than one level, depending on the conditions used. Indeed, after severe heat shock (45 degrees C for 20 min) treatment with quercetin, at non-toxic concentrations, was found to inhibit HSP70 synthesis for a period of 3-4 h. This block appeared to be exerted at the post-transcriptional level and to be cell-mediated, as the addition of quercetin during translation of HSP70 mRNA in vitro had no effect. After prolonged (90 min) exposure at 43 degrees C, however, quercetin was found to inhibit also HSP70 mRNA transcription. Pretreatment of K562 cells with quercetin had no effect on HSP70 expression, and quercetin needed to be present during induction to be effective. Under all conditions tested, the quercetin-induced block of HSP70 synthesis was found to be transient and, after an initial delay, synthesis of HSP70 reached the control rate and continued at the same level for several hours after the time at which HSP70 synthesis had been turned off in control cells. Finally, inhibition of HSP70 synthesis by quercetin appeared to be dependent on the temperature used and on the type of stressor.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Silvia Bona ◽  
Lidiane Isabel Filippin ◽  
Fábio Cangeri Di Naso ◽  
Cintia de David ◽  
Bruna Valiatti ◽  
...  

Aim. This study aimed to assess the antioxidant activity of quercetin (Q) in an experimental model of cirrhosis induced by CCl4 inhalation. Materials and Methods. We used 25 male Wistar rats (250 g) that were divided into 3 groups: control (CO), CCl4, and CCl4+Q. The rats were subjected to CCl4 inhalation (2x/week) for 16 weeks, and they received phenobarbital in their drinking water at a dose of 0.3 g/dL as a P450 enzyme inducer. Q (50 mg/Kg) was initiated intraperitoneally at 10 weeks of inhalation and lasted until the end of the experiment. Statistical analysis was by ANOVA Student Newman-Keuls (mean±SEM), and differences were considered statistically significant when P<0.05. Results. After treatment with quercetin, we observed an improvement in liver complications, decreased fibrosis, as analyzed by picrosirius for the quantification of collagen, and decreased levels of matrix metalloproteinase 2 (MMP-2) compared with the CCl4 group. It also reduced oxidative stress, as confirmed by the decrease of substances reacting to thiobarbituric acid (TBARS), the increased activity of antioxidant enzymes, and the reduced glutathione ratio and glutathione disulfide (GSH/GSSG). Conclusion. We suggest that the use of quercetin might be promising as an antioxidant therapy in liver fibrosis.


Sign in / Sign up

Export Citation Format

Share Document