Influence of lattice structure on motion of positrons and electrons through single crystals

1968 ◽  
Vol 46 (6) ◽  
pp. 543-550 ◽  
Author(s):  
E. Uggerhøj ◽  
J. U. Andersen

The emission yield from single crystals doped with β emitters is investigated. In the axis direction, energetic electrons emitted from a lattice position show a peak in yield up to 2.4 times the normal yield, whereas positrons emitted from the same positions show a dip by a factor of 4 from the normal yield. Electrons emitted from interstitial positions show no peak in yield. Energetic electrons transmitted through a thin single crystal experience increased multiple scattering when the incoming beam is aligned with an axis direction. The influence of atomic planes on the motion of electrons and positrons is also investigated. Furthermore, the electron peak and positron dip have been used for the localization of foreign atoms in single crystals.

1953 ◽  
Vol 31 (1) ◽  
pp. 112-119 ◽  
Author(s):  
E. J. Post

A procedure for the calculation of the number of normal modes of a single crystal is proposed which takes an intermediate position between the methods of Debye and Born–von Karman. The method of Debye is extended to an anisotropic continuum, where the cutoff and dispersion phenomena, which are due to the lattice structure, are accounted for in a semiempirical way. It appears possible to define a finite number of characteristic temperatures (one for cubic crystals and at most three for crystals of low symmetry) independent of direction. This ensures a comparatively simple calculation from the phenomenological elastic constants of the crystal, as such retaining one of the pleasing features of Debye's theory, i.e., a straightforward correlation between thermal and elastic data.The method is applied to eight cubic monatomic crystals for which elastic data are available. The results provide some additional evidence to emphasize the significance of the dispersion of the Debye heat waves.An application to the hexagonal crystals of cadmium and zinc leads to results similar to those obtained by Grüneisen and Goens who produced with these crystals the first experimental evidence of the dispersion phenomenon using the concept of a characteristic temperature dependent on direction.In the last section the correlation between the elastic constants of single crystals and the corresponding quasi-isotropic materials is discussed and illustrated with data found in the literature. It is shown that the polycrystalline state is more "elastic" (sometimes very considerably) than the single crystal state. The consequences of this "boundary layer elasticity" for the calculation of θ values are discussed.


Previous experiments on the failure by fatigue of single crystals of aluminium, iron and zinc, representing the face-centred cubic, the body-centred cubic, and the close-packed hexagonal lattices, respectively, have shown that failure of metallic single crystals tends to occur by slip on the plane of greatest atomic density in the direction of greatest (linear) atomic density. The results obtained with iron seemed to indicate that of the two factors, the linear density is the more important. In all three lattices, however, the line of greatest density lay in the plane of greatest density, so that slip in the direction of the line of greatest density could always occur on the plane of greatest density and definite differentiation between the two factors was not possible. The structure of antimony (and also of bismuth), however, is such that the planes of maximum density do not contain any of the lines of maximum density, so that if the type of the slip plane were determined, definite evidence of the relative impor­tance of the two factors would be obtained. The present experiment was designed to yield this evidence; but in so far as the results are inconclusive, it is hoped to obtain further evidence by a similar experiment on a single crystal of bismuth. Lattice Structure .—The lattice structure of antimony as determined by A. Ogg (‘Phil. Mag.,’ vol. 42, p. 163 (1921)) and by James and Tunstall (‘Phil. Mag.,’ vol. 40, p. 233 (1920)) is a lattice of trigonal symmetry composed of two similar face-centred rhombohedral lattices, similarly orientated, displaced relative to each other along the longest diagonal of the rhombohedron (the axis of trigonal symmetry). The angle between any pair of edges of the rhombo­hedron is 86° 58' and the atoms are spaced along these edges at points 6·18 Å. apart. The ratio of the lengths into which the lattice points of either con­stituent lattice divide the long diagonals of the other lattice is given as 0·412 : 0·588 by Ogg and as 0·389 : 0·611 by James and Tunstall. For the purpose of the present report, the exact value of this ratio is of little importance; but where some value has to be inserted ( e. g ., in fig. 1) the value 0·4 : 0·6 has for convenience been assumed.


Author(s):  
M.E. Lee

The crystalline perfection of bulk CdTe substrates plays an important role in their use in infrared device technology. The application of chemical etchants to determine crystal polarity or the density and distribution of crystallographic defects in (100) CdTe is not well understood. The lack of data on (100) CdTe surfaces is a result of the apparent difficulty in growing (100) CdTe single crystal substrates which is caused by a high incidence of twinning. Many etchants have been reported to predict polarity on one or both (111) CdTe planes but are considered to be unsuitable as defect etchants. An etchant reported recently has been considered to be a true defect etchant for CdTe, MCT and CdZnTe substrates. This etchant has been reported to reveal crystalline defects such as dislocations, grain boundaries and inclusions in (110) and (111) CdTe. In this study the effect of this new etchant on (100) CdTe surfaces is investigated.The single crystals used in this study were (100) CdTe as-cut slices (1mm thickness) from Bridgman-grown ingots.


Author(s):  
R. B. Neder ◽  
M. Burghammer ◽  
Th. Grasl ◽  
H. Schulz

AbstractWe developed a new micro manipulator for mounting individual sub-micrometer sized single crystals within a scanning electron microscope. The translations are realized via a commercially available piezomicroscope, adapted for high vacuum usage and realize nanometer resolution. With this novel instrument it is routinely possible to mount individual single crystals with sizes down to 0.1


1990 ◽  
Vol 55 (2) ◽  
pp. 345-353 ◽  
Author(s):  
Ivan Halaša ◽  
Milica Miadoková

The authors investigated periodic potential changes measured on oriented sections of Al single crystals during spontaneous dissolution in dilute aqueous solutions of KOH, with the aim to find optimum conditions for the formation of potential oscillations. It was found that this phenomenon is related with the kinetics of the reaction investigated, whose rate also changed periodically. The mechanism of the oscillations is discussed in view of the experimental findings.


1989 ◽  
Vol 54 (11) ◽  
pp. 2951-2961 ◽  
Author(s):  
Miloslav Karel ◽  
Jaroslav Nývlt

Measured growth and dissolution rates of single crystals and tablets were used to calculate the overall linear rates of growth and dissolution of CuSO4.5 H2O crystals. The growth rate for the tablet is by 20% higher than that calculated for the single crystal. It has been concluded that this difference is due to a preferred orientation of crystal faces on the tablet surface. Calculated diffusion coefficients and thicknesses of the diffusion and hydrodynamic layers in the vicinity of the growing or dissolving crystal are in good agreement with published values.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 378
Author(s):  
Li Zhao ◽  
Zhiwei Hu ◽  
Hanjie Guo ◽  
Christoph Geibel ◽  
Hong-Ji Lin ◽  
...  

We report on the synthesis and physical properties of cm-sized CoGeO3 single crystals grown in a high pressure mirror furnace at pressures of 80 bar. Direction dependent magnetic susceptibility measurements on our single crystals reveal highly anisotropic magnetic properties that we attribute to the impact of strong single ion anisotropy appearing in this system with TN∼33.5 K. Furthermore, we observe effective magnetic moments that are exceeding the spin only values of the Co ions, which reveals the presence of sizable orbital moments in CoGeO3.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Durga Sankar Vavilapalli ◽  
Ambrose A. Melvin ◽  
F. Bellarmine ◽  
Ramanjaneyulu Mannam ◽  
Srihari Velaga ◽  
...  

AbstractIdeal sillenite type Bi12FeO20 (BFO) micron sized single crystals have been successfully grown via inexpensive hydrothermal method. The refined single crystal X-ray diffraction data reveals cubic Bi12FeO20 structure with single crystal parameters. Occurrence of rare Fe4+ state is identified via X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS). The lattice parameter (a) and corresponding molar volume (Vm) of Bi12FeO20 have been measured in the temperature range of 30–700 °C by the X-ray diffraction method. The thermal expansion coefficient (α) 3.93 × 10–5 K−1 was calculated from the measured values of the parameters. Electronic structure and density of states are investigated by first principle calculations. Photoelectrochemical measurements on single crystals with bandgap of 2 eV reveal significant photo response. The photoactivity of as grown crystals were further investigated by degrading organic effluents such as Methylene blue (MB) and Congo red (CR) under natural sunlight. BFO showed photodegradation efficiency about 74.23% and 32.10% for degrading MB and CR respectively. Interesting morphology and microstructure of pointed spearhead like BFO crystals provide a new insight in designing and synthesizing multifunctional single crystals.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Yogesh Kumar ◽  
Rabia Sultana ◽  
Prince Sharma ◽  
V. P. S. Awana

AbstractWe report the magneto-conductivity analysis of Bi2Se3 single crystal at different temperatures in a magnetic field range of ± 14 T. The single crystals are grown by the self-flux method and characterized through X-ray diffraction, Scanning Electron Microscopy, and Raman Spectroscopy. The single crystals show magnetoresistance (MR%) of around 380% at a magnetic field of 14 T and a temperature of 5 K. The Hikami–Larkin–Nagaoka (HLN) equation has been used to fit the magneto-conductivity (MC) data. However, the HLN fitted curve deviates at higher magnetic fields above 1 T, suggesting that the role of surface-driven conductivity suppresses with an increasing magnetic field. This article proposes a speculative model comprising of surface-driven HLN and added quantum diffusive and bulk carriers-driven classical terms. The model successfully explains the MC of the Bi2Se3 single crystal at various temperatures (5–200 K) and applied magnetic fields (up to 14 T).


Author(s):  
Phan Gia Le ◽  
Huyen Tran Tran ◽  
Jong-Sook Lee ◽  
John G. Fisher ◽  
Hwang-Pill Kim ◽  
...  

AbstractCeramics based on (Na1/2B1/2)TiO3 are promising candidates for actuator applications because of large strains generated by an electric field-induced phase transition. For example, the (1−x)(Na1/2Bi1/2)TiO3-xSrTiO3 system exhibits a morphotropic phase boundary at x = 0.2–0.3, leading to high values of inverse piezoelectric constant d*33, which can be further improved by the use of single crystals. In our previous work, single crystals of (Na1/2B1/2)TiO3-SrTiO3 and (Na1/2B1/2)TiO3-CaTiO3 were grown by the solid state crystal growth technique. Growth in the (Na1/2B1/2)TiO3-SrTiO3 system was sluggish whereas the (Na1/2B1/2)TiO3-CaTiO3 single crystals grew well. In the present work, 0.8(Na1/2Bi1/2)TiO3-0.2(Sr1−xCax)TiO3 single crystals (with x = 0.0, 0.1, 0.2, 0.3, 0.4) were produced by the solid state crystal growth technique in an attempt to improve crystal growth rate. The dependence of mean matrix grain size, single crystal growth distance, and electrical properties on the Ca concentration was investigated in detail. These investigations indicated that at x = 0.3 the matrix grain growth was suppressed and the driving force for single crystal growth was enhanced. Replacing Sr with Ca increased the shoulder temperature Ts and temperature of maximum relative permittivity Tmax, causing a decrease in inverse piezoelectric properties and a change from normal to incipient ferroelectric behavior.


Sign in / Sign up

Export Citation Format

Share Document